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In this thesis we study a relation between time scales and structural

properties of a class of systems represented by power systems. First, the time

scale decomposition of linear time invariant systems is studied. The proper-

ties of the time scale decomposition are shown to be defined by properties of

solutions of a generalized matrix Riccati equation. Use of the Riccati

requation formulation and a particular method for finding its solution led to the
result which shows that the singular perturbation method and modal method

for reduced order modeling are two extreme points of an iterative method for

[the time scale decomposition: singular perturbation is its first point and

modal method is the limiting point. Convergence properties of a known class

of iterative methods for the time scale decomposition are characterized. A

method for the time scale decomposition of weakly nonlinear systems is proposed

as an extension of linear system analysis to nonlinear systems. Then, for

electromechanical model of power systems a connection between its time scales

and structural properties is established by showing that the so-called slow

coherency can be expressed in terms of the same Riccati equation used for the

time scale decomposition. It is shown analytically and then confirmed experi-

mentally on a few realistic size systems, that in the case of slow coherency,

the coherent areas are weakly coupled, and hence relatively independent on



c the fault location. By using the Riccati formulation of coherency, an

efficient numerical algorithm for identifying coherent areas is obtained.

Finally, a possibility of extending this study to the direct transient

stability analysis of power systems is briefly discussed.
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1. INTRODUCTION

1.1. Methods for Reduced Order Modeling with Applications to Power Systems

An object of study in this thesis is the relation between

singular perturbation, modal methods and coherency when used for modal

order reduction of electromechanical models of power systems. We will

show that all these methods are closely related if coherency is suitably

defined.

Modal method, originally proposed by Davison [1] and further

analyzed by many researchers [2,3] consists of approximating the system

x= Ax , dim A = n (1.1)

by one of lower order

z=Fz , dim F - r. (1.2)

It can be shown [4,5] that modal methods can be understood as a particular

case of aggregation [6,7), i.e. there exists a matrix K, such that

z = Kx (1.3)

and

FK = KA. (1.4)

Aggregation matrix F is then given as

+ +
F = KAK , KK - 1 (1.5)

In [5] it is shown that K has to be of the form

K = M(I O)X-1  (1.6)

where M is an arbitrary nonsingular r x r matrix and X is the n x n

matrix of right eigenvectors of A. With such K, and a(.) denoting
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spectrum of a matrix,

0(F) C a(A). (1.7)

In modal methods of [1] M = Xr, which is r- dimensional principal

minor of X ordered so that the first r columns correspond to the eigen-

values to be retained in F, and

+A X (1.8)

11 A 1221X11U
where X = X and X2  is "21" block in the matrix X.Xrr X1

In the singular perturbation approach [8], it is assumed that

the state vector x consists of subvector xl, with r basically slow

variables, and of the complementary vector x2 having variables with

mixed fast and slow dynamics. The presense of different speeds of

response in these two sets of variables is indicated by writing the model

(1.1) in the form

x 1  A1 1x 1 + A12x 2

Fx = A 21x + A22x 2  (1.9)

where L > 0 is a given small number. The slow behavior of the system

is analyzed via the descriptor variable system [9,10]

xs -Allx + A 2 Xf (1.10)

0 A x + A 'x

21 s 22xf
-1

obtained from (1.9) by setting e to zero. Assuming A2 2 exists the slow

dynamics is modeled as

-1
x s = (A11 -A1 2 A2 2 A21 )x s (1.11)
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The slow eigenvalues and the corresponding slow eigenspace of (1.9) are

continuous in e [10]. Consequently the slow component of system responses

is also continuous in e [8]. Therefore the slow behavior of (1.9) is

used as an approximation of the slow behavior of (1.9), whenever P is

sufficiently small. If

[I A2f 22 
(1.12)!e

then

x I  x s +o()

x 2 = x + xf - x (0) + 0(5) (1.13)S S

In the model (1.9) there exists not only an eigenvalue separation

(going to infinity as P tends to zero) [8], but also there is a

difference in speed of variables in x1 and x2. Such systems are called

[Il] state separable systems. Systems which have eigenvalue separation

between slow and fast eigenvalues, but state vector can not be separated

into xI and x2 based on different speeds of response are called [11]

mixed state systems. For such systems and systems with larger F an

iterative separation of time scales of [12,13] can be used.

The problem of the time scale separation consists of finding

matrices L and H in the state transformation matrix

I -H I 0 l -x
Tx- (1.14)

z Lha I s f aL I e t

such that L satisfies a generalized matrix Riccati equation
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R L A 22L IA 1 1 - LA 12 L+ A21 7
R(L) =22-L- LI2+A2 = 0 (1.15)

and H satisfies a Lyapunov type equation

P (H) = -B 1 H + HB 2 + A 12 = 0 (1.16)

In the above equations B and B2 are defined via

[B 1 o0
TAT -1 = (1.17)1 0 B2

The solutions L and H have to be such that

iX(B1 )I < I X(B2 )I . (1.18)

A central problem in so defined time scale decomposition is existence and

form of the solution for L. This problem has been studied in [31,14,15,131.

It has been shown that the generalized, like the standard Riccati equation,

has many solutions; furthermore, whenever there is a solution for L the

existence of a solution for H is guaranteed. Several numerical schemes

have been proposed for solving the Riccati equation [12,13]. The

* typical sequence has the form

Lk+l = (A22 + LA) R(k) + Lk (1.19)

* Both modal methods [16,17,18] and the singular perturbation

methods [11] have been applied to power system problems. Independently

of these general system concepts, in the analysis of power systems a

specific method called coherency has been used for model order reduction.

I
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This concept relies on an empirically observed phenomenon that after a

Udisturbance system responds in groups of machines, such that in each group
all the machines have the same response. These groups are called coherent

groups. A numerical algorithm for identifying coherent groups based on

simulation of machine responses after a disturbance and checking which

machines satisfy the above property is given in [19]. In [20,21] it is

shown that coherency of a group of machines is equivalent to the reachable

-= subspace of the disturbance being in the null space of the output matrix

defined to give as output the differences of machine angles in the groups

In [16] it is indicated that coherency can be identified in a special

case of the modal method analysis, when X X of (1.3) has a special
21 11

structure, namely if each row has all elements zero except for one which

is I. Other approaches to coherency include [22,23]; an extensive list of

i
references is contained in [24].

Having established the connection between modal methods, singular

perturbation and iterative time scale decomposition in [14], it is the

above result of [16] that motivated the work on defining partial

coherency in the framework of the time scale decomposition [25], i.e. in

terms of the Riccati equation. The alternative formulation of the

coherency led to a number of new results surveyed in the next section.

1.2. Contributions of the Thesis

The major contribution of this thesis is in establishing a link

between time scales, coherency and coupling between areas. It is shown

that if coherency is defined with respect to the slow modes of the system,

resulting areas are weakly coupled. In this case interarea motion
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( represents the slow dynamics of the system and the intermachine oscillations

within coherent groups represent systems fast dynamics. For the first

time it is argued analytically and then confirmed experimentally that so

defined areas are relatively robust with respect to parameter changes and

fault location in the system. The consideration of coherency is completed

by presenting a novel algorithm for identifying coherent areas which

q beneficially exploits an analytical definition of coherency via the Riccati

equation.

This work has been motivated by desire to overcome limitations

of existing methods for reduced order modeling of power systems. For

example, all existing methods for identifying coherency [20,21,19] depend

heavily on the fault location, making the identified areas valid only

for the particular disturbance. The analytical work of [20,21] qualifies

coherency analytically, but suffers from the same fault dependance and

lacks an efficient algorithm for identifying areas. The modal method of

[18] is based on the linearized model of a part of the system (the one

outside of a specified subsystem, usually c.alled the study area). As such

the approach can give errorneous results in the case of stronger coupling

between the two parts. The other common objection of the method is that

the reduced order system looses any physical meaning. In the modal

approach of [16] the first objection is eliminated by considering

linearized model of the whole system. Furthermore, the connection with
-I

coherency is indicated in case of the matrix X2XII having the special

structure, as discussed earlier. However, neither explicit charateriza-

tioar of this coherency nor the method of manipulating the system so as to

achieve this desired form of L given. In [26] coherency is defined as

4J



7

apartial coherency with respect to a desired subset of eigenvalues.
The algorithm for identifying coherent areas and the properties of those

are not elaborated on. Furthermore, none of the known works analyses

analytically robustness of the area boundaries with respect to parameter

and load changes.

1.3. Chapter Preview

Chapter 2 establishes a background for the analysis of coherency

in power systems, which is the main theme of this study. This background

is found in the spectrum separation problem formulated in terms of a -

general matrix Riccati equation. Properties of its solution are studied

and as a result a relation between singular perturbations, iterative

separation of time scales and the modal methods is established. An

algorithm for the time scale decomposition of weakly nonlinear systems is

proposed.

A short overview of the existing methods for the coherency

analysis of power systems is given in Chapter 3. Then a new defini-

tion of coherency as a partial coherency with respe-t to a given

subspectrum is giver. in the framework of the spectrum separation problem.

A class of systems called r-decomposable systems is introduced to study

the idealized coherency. The gained insight is then used in constructing

an algorithm for coherency identification of realistic (large) power

systems. An algebraic criterion is given for checking the validity of the

use of so called "area" variables, frequently used by power system analysts.

I!
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Aggregation of linear and nonlinear power system models based

on the partial coherency is studied in Chapter 4. When, instead of an

arbitrary partial coherency, the so called slow coherency is used, the

resulting areas are insensitive to small variations in network parameters.

Furthermore, in this case the areas are weakly coupled. Writing the

electromechanical model in terms of the area variables and machine angle

differences (the differences of angles within coherent areas) transforms

U the originally mixed state electromechanical model into the singularly

perturbed form. Use of the singular perturbation theory and the weak

coupling for the simulation of the systems responses is illustrated on a
"0

nontrivial power system example.

Further uses of coherency in the direct transient stability

analysis and other possibilities of extending this study are discussed

in Chapter 5.
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2. TIME SCALE DECOMPOSITION VIA RICCATI APPROACH

2.1. Problem Formulation

In this chapter a group of results will be given concerning

linear systems, among which we will have: the form and the properties of

r. solutions of Riccati equation (1.15); a relation between the time scale

decomposition, modal methods and singular perturbation methods for reduced

order modeling; and convergence properties of a class of iterative

algorithms (1.19). For weakly nonlinear systems an algorithm for simulation

is proposed, which takes advantage of time scale decomposition of the

linear part. The algorithm is related on an example system with an

alternative, purely numerical algorithm.

2.2. Time Scales and Generalized Riccati Equation

We will first define a general spectrum separation problem

and then as a special case treat the time scale decomposition. We start

with the spectrum separation problem as given in [271 and then proceed

with physically more meaningful formulation of the same problem via solution

of a Riccati equation. The problem of spectrum separation can be defined

as one of finding two lower order matrices F1 and F2 such that F1

reproduces a given subspectrum of A, ar' and F2 reproduces the complementary

c U c =(A). further
subspectrum r, r r r We want:

Assumption 2.1: a n c = .
r r

According to [27, first decomposition theorem], the problem of

spectrum separation is always solvable under the Assumption 2.1. To each

of the subspectra there corresponds a unique A-invariant subspace,S r C X

of dimension r and Sc c X of dimension n -r, where Z is n-dimensional
r



10

vector space, such that the spectrum of A restricted to Sr is ar, and the

- spectrum of A restricted to Sc is c. Then A in this new basis is of ther r

form:

A r 1 (2.1)

where a(F I ) or' a(F 2 ) Cc. To verify above form let us note that forr 2 r

all column vectors in V1 we have AV IE S . Hence, there exists a matrix

F such that

AV, = VIFl , (2.2)

but this defines eigenvalue-eigenvector problem up to a similarity

transformation VI 
= X1 KI , where XI is the matrix of r eigenvectors corre-

sponding to ar. Similarly, for all vectors in V2, AV2 ES and there

exists a matrix F2 such that

SAV2  V2 F2  (2.3)

with 0(F 2 ) = and V2 = X for eigenvectors X2 and some nonsingular K2X 2 2K2  K 2.

The relation between the states of equivalent systems in which

A and Av are state matrices is given by

x = Vx (2.4)

Notice that in order to achieve the spectrum separation it is sufficient

* to consider only the invariant subspace corresponding to the given

subspectrum 7r and complement the space by any independent n-r-dimensionalr)

subspace. Of course, in this case one gets only a blocktriangular form of A
V

-S C Z is A-invariant if AS c S
r r r



Let us consider now the transformation of (1.1) in the form

Sx- [V1 V2]x]v  (2.5)

where Im V1 is A-invariant r-dimensional subspace of X corresponding

to ar2 and Im V2 spans n-r dimensional subspace of Z such that it does

not contain any of the vectors in the subspace Im V1 . but otherwise

arbitrary.

Remark 2.2: Since V1 has full rank, there always exists an ordering of

states in x for which Vll of VI  ] is nonsingular. Due to this

remark we assume that x in (2.5) is ordered so that V11 is nonsingular.

That allows a particularly simple V2, V2 
= [J . With this choice of

V1 and V2 the transformation (2.5) can be rewritten as

K2X IiFv: (2.6)

The transformed state matrix is

V IL 0JA K 0 I F= (2.7)0 1 L I] L 0 1 F 2

where

L E V21V (2.8)

F= V1 1 (A1 1 +A 1 2 L)V 1 1  - B1 11 (2.9)

F = A, - LA B (2.10)

_~~ &2 12 2 I- I
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It follows from (2.7) that the spectrum separation can be achieved with

(L the transformation

x= 1 0] T xv (2.11)
L Io

with the only requirement that Im [LJ is A-invariant corresponding to
a . The significance of this transformation is that the states of xrv

u retain the physical meaning if the spectrum separation problem results

in L = 0, i.e. if the original system consists of two decoupled

(through A21) subsystems. In cases of nonzero coupling between the

* subsystems, the first r states of xv still retain their meaning, while

only the last n-r states are changed. After this transformation is

applied, we get

A v= 121 (2.12)

where B n

where B1 and B2 are defined by (2.9) and (2.10).

From (2.7) it also follows that in solving the spectrum separa-

tion problem it is necessary to make "21" block in the transformed matrix

* equal zero. By writing the equation for "21" block of (2.7) we get

R(L) 1- LA + A22L - LA12L + A21 = 0 (2.13)

0 This equation has the form of a generalized Riccati equation. In the

case when A11 = - A22T it becomes the standard algebraic Riccati

equation found in optimal control and estimation theory. For later

* reference we write this equation in the form [28,29]
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T - ITR (L) - LF - FTL + LBR BL-Q (2.14)

for which underlining problem is one of finding control u of the

system

x = Ax + Bu (2.15)

so as to minimize J(x,u) given by

J(xu) = S (xTQx + uTRu)dt (2.16)
0

The matrix E associated with (2.14), the same way A is associated to

(2.13), has the form

[A -BR 1BT ]
E = [_ AT (2.17)

Therefore equation (2.14) is a special case in the spectrum separation

problem. Several standard results of (2.14) will be rephrased in the

light of the results on existence,form and uniqueness of the solutionI
of generalized Riccati equation (2.13), which are coming next.

Theorem 2.3:

Let an r-element subspectrum of A, a be given, with no comnmonr

eigenvalues with its complement ac, fr ac # 0, a U c = a(A). Let S
r r r r r r

be the corresponding A-invariant subspace of dimension r with its basis

given as columns of a matrix VER n xr , i.e.

AV VF 1  (2.18)

implies

a(F) r  (2.19)

|r
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Then,

C (i) the solution L of the Riccati equation (2.13), such that

a(B) I Tr exist if and only if the matrix VI of V = is nonsingular.

This solution is then given as

L = L2V 1
1  (2.20)

(ii) When columns of V are eigenvectors of A, then columns of V1

q are eigenvectors of BI .

Proof: Equation (1.13) can be rewritten as

R(L) = [-L I] A = 0  (2.21)

The equation will be satisfied if and only if

-~(a) Tm [L}Ker Aor

(b) Im A[J Ker [-L I] = Im [
But since (a) is already included in (b) we proceed with (b).

4 ImA A AIm [I]c Ker [-L I] =Im , (2.22)

i.e. for any solution L, Im Fl] must be A-invariant. We now want to
LLI

relate this subspace to the spectrum ar" More specifically we will

be given a and the corresponding A-invariant subspace S with a basisr r

VERnxr, and we want to see if there exists an L for which NLwill span

S r . Clearly, if and only if V1 is nonsingular such an L exists, since

from the requirement that V and [L1 span the same subspace, there exists

- -- e
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a matrix KER r r for which

L VK. (2.23)

From rank I= r= rank V K it follows that both V and K have to be of full

rank. Then K=V 1 ; which proves (2.20). To prove a(Bl)= we write as1 r 1 a

r~r

B1 = [I 0] AL i (2.24)LLJ

" -I

Due to (2.18) and (2.23) with K V1 , we have

BI = [I 0] AVV [I OVF V1 =V F V 1

which completes the proof of (i) and (ii).

The proof given here is more general than those given in

[31,15,14]. In [31] only the case of diagonalizable matrix A has been

treated and a particular,eigenvector basis for S was assumed. Inr

[14,15] sufficiency has been proved. Namely if V spans an invariant

subspace then the solution L is of the form (2.20). Here it is proved

that for L to exist it is also necessary that V spans an invariant

subspace of A. The form of the solution also applies to the standard

Riccati equation (2.14) with E of (2.17) playing the role of A.

A different proof for this equation is given in [30].

Remark 2.4: Fronm the geometrical arguments used in the proof of the

theorem, it should be clear that L does not depend on the particular

choice of basis for an invariant subspace corresponding to a given spectrum.

We will however demonstrate this fact in matrix terms, which are more

suitable for computational purposes.

Propuition 2.5: Each matrix L solving the Riccati equation (2.7) is

independent on the choice of V spaning A-invariant subspace corresponding
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to a given spectrum.

Al Proof: Suppose that V spans A-invariant subspace corresponding to a given

spectrum ar. By assumption on existence of L, V1 is invertible and

L = V 2V 1  If some V' # V spans the same subspace, then V' = VIlK, for

some nonsingular K. In this case

L' = (V2K)(V 1K)- = L, (2.25)

U which completes the proof. From the theorem it follows that the Riccati

equation has many solutions. In fact for any a for which eigenvector

basis V has VI invertible (due to the Proposition 2.1 any other basis can
0

be assumed) there corresponds one L. For the time scale decomposition

of particular interest is the case when a = a , where a contains r
r s s

smallest in magnitude eigenvalues of A. In this case the eigenvalues

of A are divided into the slow eigenvalues contained in B and the fast

eigenvalues contained in B2. Due to the crucial role of this solution in

the most of the results that follow, we introduce

Definition 2.6: The solution of Riccati equation (2.13) for which

fX(BI)I < jk(B2 ) I is called dichotomic and is denoted by L

Remark 2.7: In case of the standard Riccati equation (2.14) and (2.17),

it is known [29] that under usual controllability - observability

assumptions, matrix E has exactly n eigenvalues with strictly negative

real parts, whose spectrum we will denote by a and, symmetric to those* n

with respect to the imaginary axes, n eigenvalues with positive real
+

part, whose spectrum will be -n . Among many solution of (2.14), of

particular interest is the one for which a = a- and BI = A = F - BR B TL.* r n F

In this case the Assumption 2.1 is satisfied. By the Theorem 2.3 (A -=n2
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i.e. the closed loop system matrix is stable. It is also easy to see
that there exists one solution L for which 0(A + a+ The symmetry of L

F n
can be concluded from Rs (L) = [Rs (L)]T = 0 and uniqueness of the solution

corresponding to the same spectrum.

Remark 2.8: Let X be the matrix of right eigenvectors (and generalized

XI -i
eigenvectors) of A. If V of Theorem 2.1 is V , then L =

1 L 2 1 x
and B = A + A 2 X 21X. But this B has exactly the same form as the

aggregated state matrix in modal method approaches. The spectrum

separation problem as defined by (2.1) and (2.2) indicates one less known

fact, that with almost the same computational expense needed to obtain

B in modal method approaches one can get also the matrix B2 (2.10) which

reproduces the complementary spectrum of A.

From the statement of the theorem and when Assumption 2.1 applies
K

it can be seen that the only condition under which the solution of the

Riccati equation does not exist is when V is singular. Since at the time

when a spectrum ar is specified and some basis of the corresponding

A-invariant subspace is computed it is not known whether V I will be

singular or not, the question arises: can the effort spent on computing V

(which is considerable as will be discussed in chapter 3 and 4) be still

used to achieve the desired spectrum separation, even if V I is singular.

The answer is yes, due to the following Proposition [31].

Proposition 2.): If V spans r-dimensional A-invariant subspace corre-

sponding to a given I , then there always exists a state permutation

T
X Px, A = PAP such that V = PV is A-invariant and VI is invertible.

Proof: It simply follows from rank V = r. Hence there exist r linearly

independent rows in V. From AV = V K, where :(K) = 7 it follows that
r

V= PU.

. . .. I
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This result says that with the mere reordering of states, and

( likewise reordering of rows of V there can always be found V inverible,

i.e. the solution of the Riccati equation, now for the redefined system

(x,A). The singularity of V1 is related to the controllability and

observability of the subsystems of A. From the form of BI and B2 (2.9)

and (2.10), in which L appears once as a controller feedback matrix for

the pair (AiI,A1 2) and the other time as an observer feedback matrix for

the pair (A2 2 ,A1 2), it can be seen that a necessary condition for VI to

be invertibel (i.e. for L to exist) is that the modes of A uncontrol-

lable through A12 belong to a = a(BI), and the modes of A22 unobservable

through A1 2 belong to the complementary spectrum c = a(B2 ). This becomes12 ~r 2

apparent by noting, for example in the case of uncontrollability, that if

a XE( c is an uncontrollable mode of All, then for any L this X will beur ilC
in a(B1 ), which is contrary to the requirement that XEa = a(B2).

It should be noted that in most applications the approach via reordering

rows of V to assure invertibility of V1 is viable one. However, in the-4

case of standard Riccati equation, because of the structure of E, it is

not possible to permute rows of V, except within V1 and V2 in which

case it does not change singularity of V1 . However, under usual assumptions

on controllability-observability it is known that the unique solution for

L exists, which means that V I is invertible. For some algorithms for the

time scale decomposition, one of which will be presented in the next

section, it is important to make reordering of states to assure inverti-

bility of V1 before the algorithm is applied. From the form of the

transformation (2.11) and the requirement that ,(B1) < X(B2 ) it can be

concluded that the reordering of states should be such that x1 contains
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the slow variables of the model and x2 predominantly fast variables. For

cases in which physical considerations or previous experience cannot help

make such ordering,states can be ordered so that the first row of A has the

smallest norm, the second row has the next largest norm, and so on.

2.3. Practical Aspects of the Spectrum Separation Problem

In practice R(L) cannot be made zero, except in very special cases.

Therefore, it is of interest to see how accurately 0(BI) and 0(B2 ) of

B1 -A

A B A12  (2.26)Av

IR(L) B2

Lcin which R(L) is supposedly small, reproduce a and ac. Equaticn (2.26)
r r

represents the lefthand side of (2.7) for some L; we assume it is close

to the solutuon corresponding to a given a . The answer to the above

question is given in the following theorem, given in [32].

Theorem 2.10: Let !!,Al 2 = trace (ATA) and define 6 = inf {tlPBI-B2 P :
p(n-r)xr , P

PER , 1). If

flIR (L)Il A12 ' 1

2 4 (2.27)

then there exizts a unique PER(n -r)xr satisfying

P11 < 2 (2.28)

such that

Im (2.29)

is an invariant subspace of A . Moreover 7(Av) is the disjoint

v
uni on



20

(A) = o(B 1 +A12P) U a(B2 - PA1 2 ) . (2.30)

In practical applications, when R(L) is sufficiently small we approximate

Av with 1 12 , so that 0(B 1 ) approximates a(Bl +A 12 P) and (B2)

approximates o(B2 -PA1 2), and, finally, ImL1 approximates Im[I] - The

theorem states that the error is directly proportional to P, whose norm

is bounded by the norm of R(L). In other words there is a continuity in

the change of spectrum and the invariant subspace for small changes in

R(L). The number 8 in the theorem is a measure of spectrum separation

between B1 and B2. If B1 and B 2 are symmetric this number is equal [32]

to the smallest in magnitude difference between any two eigenvalues of

B1 and B This number is positive, except when B and B2 contain common

( eigenvalues, in which case it is equal to zero. However under Assumption 2.1

it will always be positive. Condition (2.27) indicates that the Riccati

equation has to be solved more precisely if either there is a strong

connection between B I ,-d B 2 subsystems through A12 or spectrum separation

between the two subsystems is small.

We now use the theorem to give an alternative interpretation of

some of the standard results in the singular perturbation theory [8].

When the state matrix of (1.9), which is

•Al AI21
11 12

A' is transformed by means of the transformation (2.11),
21 22

A 2 7 A? I

the corresponding Riccati equation is R(L) - LA 1 + L - LA L +

For small 8 the dominant terms in the equation are those containing e.

Hence a natural choice of an approximate L solving the equation is the
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one which annihilates P-dependent terms. This leads to L = -A2 2 A2 1, and

B- A A A A A2 which is the slow state matrix as given by
W B = 11 12 A 2 22 2 1

(1.11). To apply the Theorem 2.10 we have to check the condition (2.27).

It can be shown that for nonsingular A22 and sufficiently small e, 6 = O(,

and hence there exists an such that for all 8E(O,*] the condition

(2.27) is satisfied. Therefore, there exists a P O(8), such that the

spectrum of A' is given as a disjoint union

a (A') r (A +AI P ) U C(A2 2  - , (2.30)

A A2A212 2 - 12 (2.

and the slow eigenspace of A' is spanned by Because of

"A22 A2 1 ]

P = O(8) this result exhibits the continuity of the slow eigenvalues

and the slow eigenspace with eE(O,e ]. A slight difficulty in extending

the argument to hold for e = 0 is avoided in [10], where in addition the

continuity of the inverse of the fast eigenvalues and the fast eigenspace

with eE[O,e ] is proved as well.

2.4. Relation Between Singular Perturbation, Time Scale Decomposition

and Modal Methods

In the previous section it has been shown that the time scale

decomposition and the modal method for reduced order modeling are the

same in regard to the slow subsystem. In addition time scale decomposi-

tion formulation reveals the fact that with the same expense spent for

obtaining the slow subsystem state matrix, the fast state matrix can be

obtained as well. For some engineering applications it is not necessary

to find exact invariant subspaces, or equivalently the exact solution of
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the Riccati equation [11]. Instead, an iterative algorithm for the time

scale decomposition is established, whose results after only few

iterations are then used. In this section we will relate so defined

time scale decomposition with the singular perturbation and the modal

methods.

A basis for comparison of the methods is found in the simultaneous

iteration method for computing invariant subspaces of general (nonhermitian)

matrices (SI for short) [32]. We will first review relevant facts about

this method and then establish the relation.

Fo*arxAltX, 2'1. be eigenvalues ordered so that

IX11 ZIX2I . .. ZJ xn (2.31)

Let a rdenote the spectrum consisting of the r largest in magnitude

Ir

eigenvalues, and let S rbe the corresponding r-dimensional invariant

lr

subspace. Furthermore, let Q rbe r-dimensional subspace with nonzero

projection on S ralong the complementatry invariant subspace. Then, if

[r

ii

lxxi > IXr+ 1, A kQ rtends to S ras k tends to infinity. For

r = 1 this corresponds to the well known power method for obtaining the

eigenvector for the largest eigenvalue Xt

Before presenting an algorithm which uses this sequence to

find a basis of the invariant subspace let us recall the result about

e Schur-decomposition of a matrix [32,38].

Theorem 2.11: Let AERnxn~r. Then there is a unitary XCntx such that

S = X AX (2.32)

is upper triangular. The matrix X may be chosen so that the diagonal

elements of S which are eigenvalues of A are in descending order of

absolute value.

ISlI2 . ~l<.1
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For distinct eigenvalues corresponding columns of X are unique up to

3 multiplication with a unit length number; for multiple eigenvalues of

multiplicity p, the corresponding p columns in X span unique p-dimensional

subspace. If X denotes first r columns of X then A-Im X = Im X r i.e.sspe. fXr r r'

I these columns span r-dimensional invariant subspace corresponding to a rr

Column vectors in X are usually called Schur vectors.

Now let us explain one step of SI algorithm for finding a basis

k
of AkQr. Define rxr matrix B as

B = V kAV k  (2.33)

and apply the decomposition of Theorem 2.3 to B

B) B X = SB (2.34)B kB

Let Qk k ' which is obviously a basis for A Q. A basis for the next

step is obtained as

Qk+l = AQk (2.35)

To summarize, the algorithm consists of orthonormalizing an arbitrary basis

matrix (Qk+l' say) to get V, then forming B (2.33), decoupling low

order matrix B according to (2.34) and using unitar., matrix Qk to perform

the next step (2.35).

Convergence behavior of this algorithm is given in the following

lemma due to [32].

Lemma 2.12: Let S be equivalent matrix to A according to Theorem 2.11.

Let E1 denote the matrix consisting of columns I through A of I and E,

denote the matrix consisting of columns 2+1 through r. If ! P I +I and

I rl >I , then there are matrices, W kER nrwith orthonormal columns

r -~ - - - - -
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divided on Wk = (WW2), WIER n×A, W2ERnx(r-A) such that

1. In(Wk) = skQ (2.36)

2. W1 = E + O(Ix r+l/1 lk) (2.37)

3. W2 = E2 + o(1Xr+l/XrIk) (2.38)

The lewa shows the speed with which individual columns in Q of (2.35)

q tend to the Lorresponding Schur vectors. The speed is linear with

the factor e. for the i-th Schur vector, defined as
1.

= x(2.39)l xil'

and the convergence of the algorithm is global.

Practical details about the realization of the algorithm are(
contained in [32]. For our purpose we need only the established result

about global conve.rgence of the algorithm with the linear speed defined

by P..

We also rewrite the algorithm (2.33) - (2.34) in the form

A V V (2.40)
k+l k

Using this form of the algorithm we now characterize the convergence

properties of a class of iterative algorithms for solving Riccati

equation represented by (1.19) [13 ]. We rewrite it here for convenience

I-

Lk+I = Lk - (A2 2 - LkAI 2 ) R(L ) (2.41)

Theorem 2.13: Let r be given such that 'yrl >1?r+l l, with the eigen-

II I

values of A ordered according 
to (2.31). Let Vk = V be an

k v~ bea
L 2 e
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n xr matrix with nonzero projection of column vectors on the
-1l-

r-dimensional slow subspace of A. If V 1k exists, denote Pk = VkV
lk k 2k lk

Then, if L0 
= P0 ' the sequences Pk generated by (2.40) and Lk generated

by (2.41) are identical. Furthermore, IX(BI(Lk))I < IX(B 2 (Lk))I fora
sufficiently large k.

Proof: Writing (2.40) in expanded form, substituting PkVlk for V2k,

eliminating V1 from the equations and regrouping the terms, directly

results in Pk = L k Since Im Vlk tends to the slow subspace of A, due

to the Lemma 2.11, BI(Lk) will eventually contain the r slow eigenvalues

of the system.

This result shows that the Riccati iterations (2.41) have

global convergence, with the speed determined by the largest i' i.e. Pr

which corresponds to the slowest converging Schur vector in the SI

method. Furthermore the spectrum of BI = A11 +Al 2Lk tends to as, which

means that Lk tends to Ld ' In [15] it is shown that Ld is the only

stable equilibrium solution of the matrix differential equation

L = R(L) (2.42)

The following relation between singular perturbation, modal methods and

the iterative time scale separation is immediate consequence of the above

theorem.

Corollary 2.14:

Let BI(k) be defined as Bl(k) = A1 1 + A1 2 Lk, where k

is defined by (2.41) for L0 = 0. Then

(i) BI(1) is the slow state matrix obtained from singular

perturbation approach (1.11)

S
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(ii) B (k), k is the modal method slow state matrix, and

( (iii) B (k), I < k < , is the slow state matrix of time

scale separation.

Proof: Substituting L0 = 0 into (2.41) gives L, - I A and
2221 B1( 1)

of the form given in (1.11). This proves (i). From Theorem 2.12

Im [I] tends to the invariant slow subspace of A as k goes to infinity,
[Lk]

which due to the Remark 2.8 means that Bl(k) tends to the slow subsystem

matrix obtained from modal methods. The case (iii) is the case in

between singular perturbation and modal methods, which offers advantage

over the exact modal method when low accuracy is acceptable but F isr

not sufficiently small that only one iteration of the singular perturbation

approach sufficies.

This corollary, in view of Leimma 2.11 and Theorem 2.13 gives a

numerical interpretation for why the singular perturbation approach is

successful in case of small P: it is simply because the speed of conver-

gence is so high (proportional to )-k that only one iteration is needed

to make R(L) sufficiently small. The corollary also suggests one meaningful

interpretation of the small parameter P, as being the eigenvalue ratio

gr+1
X

r

We now give several examples to illustrate properties of the

iterative time scale decomposition.

Example 2.15: In this example we demonstrate the importance of the state

ordering for the time scale decomposition . Given (2.43) and r=2,

= 1 x (2.43)
-0 1
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it is evident that the state matrix has two Jordan blocks: one of

Ksize 1 corresponding to the simple eigenvalue 5 and the other of size 2
corresponding to the eigenvalue 1. From the triangular structure of

this matrix it is evident that the spectrum separation is already achieved

for any choice of a r. However, the time scale separation is not achieved

since the large eigenvalue 5 appears in the "11" block. We specify

r = 2 and want to find matrix Ld, which is a part of the transformation

- (2.11) so that 0(B 1 ) = [1,1). The Riccati equation has the form

/5 0R(L) 1 - 1 ( 2).1 + (.Z1 12) 0 1)-(' 2(1)(l2 0

from which two solutions can be found easily: L1 = (0 0) and L2  (-4 0).

For the first solution B1 has eigenvalues 5 and 1, i.e. nothing is changed

* from (2.43). Only the second solution results in the desired spectrum

of B1 , i.e. Ld = L2. Application of the iterative algorithm (2.19) to this

system results in the convergence behavior given in fig. 2.1a. After

initial divergence the algorithm achieves asymptotic behavior predicted

by the Lemma 2.12. To start the algorithm we have perturbed slightly A2 1,

since for the usual initial condition L = A22 A the algorithm would1 22 21

stay at the unstable solution L = 0. This example shows several interesting

points. First, it emphasizes the importance of state ordering, for if

the state ordering was such that A had the eigenvalues close to the

eigenvalues of the desired B1 , the algorithm would have started from the

falling side of the curve a, in fig. 2.1. The situation is illustrated

by the curve b, which corresponds to the ordering of states (x2 ,x3,x1 )

- and a small A 21 This is also one of the reasons for the success of singular

-2 - - - - -
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Example 2.15.
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perturbation approach, in which it is required that the states be ordered

according to their speeds (1.9). This example shows that even though the

eigenvalue separation exists, only after the states are properly ordered

one step approximation of the singular perturbation approach is successful -

D as indicated by the curve b as opposed to the curve a. Second character-

istic of the example is that it contains multiple eigenvalues, and

still achieves the asymptotic behavior predicted by Lemma 2.12. In other

- words the individual generalized eigenvectors corresponding to multiple

eigenvalues may not be unique but the space they span is unique, as

discussed in connection with Theorem 2.11.

Example 2.16: With this example we demonstrate applicability of Lhe

techniques of this chapter to the solution of the standard Riccati equation

(2.14), associated with the optimization on infinite interval. The
w

problem is to find a control u which will minimize criterion (2.16) for

the system with
r 7 1 -0 I' O1,4 0

0 cTCD A = 'B=' 'R = 'Q =

0 -2 1 0 1L. L J

It is easy to check that (A,B) is controllable pair, and (A,C) is

observable pair. In fact the system is stable since eigenvalues are

0 and -2. The objective of the design is t.i improve its performance.

The matrix E (2.17) for this system is

0 1 0 0

0 -2 0 -1
E =

-4 0 0 0

0 -1 -1 2
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whose eigenvalues are (-2,-1,1,2). If we define spectrum separation

-(" problem for E with a2 = (-2,-i), then corresponding B I = A -BR B TL

would be the closed loop feedback matrix whose spectrum would be 02 and

the feedback gain K from u = Kx would be K = - RI B TL. The spectrum of

B indicates improvement in performance over the open loop system.

Now, we want to use globally convergent subspace iteration method for

computing the solution L. Since the eigenvalues of 02 are not the

q largest in magnitude eigenvalues of E, we perform bilinear transformation

E = (E -TI) (E +cpI) (2.44)

* which has the property to preserve the invariant subspace corresponding

to 0 , and has eigenvaluesr

X(E) - (E) - (2.45)
X(E) +cP

so that the n eigenvalues corresponding to Re X(E) < 0 can be made to be

the largest in magnitude eigenvalues of E with a suitable choice of r.

A z that sufficies is

c > sup(Re Xi(E), i = 1,2, ..., 2n3 (2.46)

In this example we estimate cp = 5. We now use subspace iterations (2.40)

with E and initial guess randomly selected as

1 -.2

* .1 .7
Vt

-.3 1

.5 -.8

After each iteration k we compute IR(Lk), and give it in fig. 2.2 as
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a function of the number of iterations. The behavior is as predicted

1 by the Lemma 2.11. After 11 iterations elements of LII differ from the

corresponding elements of the exact L = by less than 0.01.

Convergence is faster for systems whose closed loop system matrix has

larger margin of stability since in this case the eigenvalue separation

between the eigenvalues with positive real part and the eigenvalues with
x+ (g*)
Xn+l(R

negative real part is bigger, and hence F - is smaller. This example
X n (E)

demonstrates the possibility of using the advantage of having globally con-

vergent algorithm for solving the Riccati equation, for either initializing

the faster converging algorithms, such as [33], which require initial guess

close to the final solution, or directly use it for, say, large sparse

system matrices A. Because of the simplicity of the algorithm it can also

be used for smaller order systems when limited computer capabilities are

available.

Example 2.17: This example illustrates time scale decomposition of

one machine infinite bus power system model. The form of the model and

the linearized state matrix [34] are given in Appendix A. The

iterative time scale decomposition using the algorithm (2.41) is exhibited

in fig. 2.3d, for the case r=2, which is the case with the fastest

convergence. The behavior of the subspace iterations for the same model

and different r is given in fig. 2.3. The convergence criterion for

B the latter is derived from (2.34) by defining E )*B2 e(eI  rtelteisdrvdfo(23)bdeiigE= (k XSB=ee ... e r •

This example will be completed in the next section after the block-

diagonalization is discussed, by showing a relation between the number of

* iterations in the time scale decomposition and the quality of the

approximation.
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Figure 2.3. Time scale decomposition of one machine-infinite bus

system.
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2.5. Block Diagonalization

UAfter the spectrum separation is completed, the system state

matrix is in the block triangular form (2.12). For some application

it is useful to have the two subsystems, whose dynamics is contained in

B1 and B2, completely decoupled. In geometrical terms it amounts to

finding a basis for invariant subspace corresponding to the spectrum a
c

r'

as indicated by (2.4). In matrix terms we can apply a similarity

transformation to (2.12), similar to (2.11)

y I H!
xv  T x (2.47)

z v Hv

which does not change the physical meaning of the last n- r components

of xv. When this transformation is applied to (2.12) it results in

v2

B A BI  P(H)7
1 12: T-1 - 1(.8TH  H (2.48)

THH
0 B 0 B2

I 2: 0 2

where

P(H)= HB2 - B1H + A1 2. (2.49)

The solution of P(H) = 0 is a function of the solution L of R(L) = 0.

It is well known that equation (2.49) always has a solution when

Assumption 2.1 is satisfied. In case when a r = C(B1 ) contains r slowest

modes of A, this solution can be found as the limit of the sequence

Hk+l = (BlHk - A1 2 )B 2
1  (2.50)

This can be seen by writing (2.50) as

hk l = Ahk + b - (I D B2) [(BI S I)hk-al 2 ] (2.51)
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where D denotes the Kronecker product. The eigenvalues of A are

X(A) = X(B1 )/X(B 2) so that X(A) < I and hence Hk converges to a unique solution.

Combining transformations (2.11) and (2.47) we get the complete

transformation between x and (y,z) as

y I-HL H .i
2 H T (2.52)

z -L I X,

where L and H satisfy (2.13) and (2.49), respectively.

For some engineering applications where time scale decomposition

is required, only a few iterations of (2.41) and (2.50) for L and H are

sufficient. Figure 2.4 is the power system of Example 2.17 where the

responses of the system based on subsystem integration of (BVY)

and (B2 ,z), combined through (2.52) into x are compared with the slow

* approximation y. The matrices BB 2 and T contain L and H obtained after

two iterations of (2.41) and (2.50).

2.6. Time Scale Separation in Weakly Nonlinear Systems

Simulation is still dominant method of analysis for many

systems, especially for nonlinear systems. An objective of the analysis

is to investigate the effect of parameter changes on system behavior,

or to detect system instability. The emphasis is usually on the speed

of simulation rather than on accuracy. Yet, the speed of simulation

is constrained by the wide range of dynamic phenomena encountered typically

in large scale systems. In other words some variables of the system

respond much faster than the others (in linear systems this is to say

that there is a spread of eigenvalues). We say that system possesses

multitime scale property. This property is indicated by writing the
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system model in the singularly perturbed formI
= pl(xPX2 ) (2.53)

1 2=- - '2 (Xl x2) (2.54)

for x in some domain D, as in (1.9) for linear systems. Assuming

that the fast subsystem is stable along any trajectory initiated in D,

[8],the analysis of (2.53), (2.54) is performed in two time scales

avoiding so the stiffness of the model, in much the same way as in

the analysis of the linear singularly perturbed systems. The problem

arises when all states have mixed fast and slow components, i.e. in

the mixed state case. In this case meaningful decomposition of the state

vector as in (2.53),(2.54) is impossible.

WThis section addresses the problem of the simulation of two

time scale mixed state systems transformable to the form

= Ax + f(x), f(O) = 0 (2.55)

if f(x)EC I* and has small Lipschitz constant. We will call such

systems weakly nonlinear since basic characteristics of their behavior

are determined by the linear part. Hence, two time scale property

of (2.55) implies that the matrix A has two groups of eigenvalues widely

separated in magnitude. If T is the block diagonalizing transformation

(2.52) for the matrix A, such that slow eigenvalues are in BI and fast

eigenvalues are in B2 (B and B2 are defined by (2.9) and (2.10)),

then a transformation of variables

CI is a class of functions with continuous first derivative.

6|
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x T ~ f' Y]W (256
• Lz [y z =W 2  x (.6

can be used for the nonlinear model as well, in which case (2.55) becomes

I= Wf(x) (2.57)
S0 B2  z

where W is the inverse of T given explicitly by (2.52). In the above

U model y and z represent predominantly slow and predominantly fast

variables respectively, which are decoupled through linear part, and

weakly coupled through the nonlinear part (the weak coupling is the

consequence of the assumption on f as having small Lipschitz constant).

The system (2.57) is now in singularly perturbed form and the standard

singular perturbation approach can be applied:

V (i) solve the slow subsystem

y = Biy + Wlf(y2z) (2.58)

0 = B2 z + W2 f( 22) (2.59)

for y and z, and

(ii) solve the fast subsystem

z = z +B z +W f(T (2.60)
2 2 2 Zz

Sy

for z. Then approximate the solution x by x T I

Implicit assumption in this algorithm is that the fast subsystem

Jacobian

STf = B + W (2.61)f 2 2 6z
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evaluated along y and z has Re%(Tf) < 0 and z(0) is in the appropriate

Odomain of attraction (8]. Under this assumption z can be expressed

as a continuous, unique function of y, and hence a unique solution of

(2.58) and (2.60) exists in y and g. Solving this equations can answer

C the question of slow subsystem stability, and complete system behavior.

If, however, we assume that system is stable and want to observe

its slow behavior only,for different initial conditions in the stability

m domain, or after a change in parameters, then a useful combination of

the linear and nonlinear simulation can be achieved if the system is

presented in the form (2.57). In this case after some time t , such

that f(x) is sufficiently small, the simulation can be continued on the

low order linear subsystem y = B1Y. We illustrate now some of the

potentials of this approach, and some differences from other related

I approaches to simulation, on the one machine infinite bus power system,

whose model is given in Appendix A. Let us denote that model as x = CP(x).

For integration we use the predictor-corrector method of [35], but do

II not investigate which numerical method is the best. We will show a set

of figures with responses of xl, which is typical of what we want to show.

On each figure there are two responses: solid line is always the full

w
system response, i.e. the solution of x = p(x). The dashed line corresponds

to different approximations of the slow response, each of which will now

be explained.

First the system is linearized around the stable equilibrium,

and the linearized state matrix A is given in Appendix A. Then

f(x) = (x) -Ax. For the block-diagonalization of A we specify r = 2,

7 2 = sand use T of (2.52), in which L, H, B1 and B. are as obtained
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after two iterations of the algorithms (2.41) and (2.50), respectively.

Now the model is in the form (2.57). Figure 2.5 gives x as obtained by

solving (2.53) and (2.54) with e set to zero. The error is unacceptable.

Figure 2.6 shows the nonlinearity present in the slow system response,

since the dashed curve is the response of B = Bly. The true nonlinear

slow response should be a line which would pass in between the weggles of

the solid curve. Figure 2.7 gives the response of the slow

component of xI, which result from solving (2.58) and (2.59) for y and

using the back transformation x = y (which comes from x = T ).

The improvement of this approach (application of singular perturbation to

the transformed system) over the application of singular perturbation to

the original model is significant. On the next figure, fig. 2.8

the slow response of < is given as computed by using nonlinear model

(2.58), (2.59) for the first two seconds only, and then for the rest of

the time using linearized, low order model y = B1y. In addition larger

step size is used. Here the nonlinear model is used to initiate properly

the slow linear subsystem. The effect of nonlinearities is evident from

comparing these responses with fig. 2.6.

4 In some resent approaches to numerical integration of singularly

perturbed and descriptor variable system [36] it has been proposed to

integrate the original system (2.53), (2.54) but adjust the step size of

integration according to the slow component of the local error (see [50] for

numerical integration details). For "filtering" the errror in order to

get its slow component a matrix very much related to W (2.53) is computed,

whenever the step size has to be changed. Based on the power system

example only, it seems that that approach may give more accurate response
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(7 of the slow dynamics if required, then it is possible by solving (2.58)

(2.59). However, slow dynamics of (2.58), (2.59) permits much larger

step size than in the method of [36]. This is useful when a quick

approximate solution is satisfactory. The difference in accuracy between

the two methods is illustrated for the case when both are forced to use

very large step size, fig. 2.9.

I

-0
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3. PARTIAL COHERENCY

3.1. Introduction

Application of the modal method for the reduction of the multi-

machine electromechanical model of power systems, has been tried in [16,18].

However, more successful has been the use of coherency. Two generators,

with responses denoted by xi(t) and x.(t) are called coherent if

xi(t)-x.(t) = const. (3.1)

Groups of machines in which any two generators satisfy this criterion are

called coherent groups or coherent areas. Once coherent areas are known the

reduction of the model order is achieved by replacing all the coherent

generators by one. A critical step however, is the grouping of the machines

into areas. Coherent machines are identified either from actual or

simulated machine responses [17,18], or by an algebraic evaluation of the

modes present in the linearized model [16,20,21,23]. Most analytical methods

require that machines be coherent throughout the duration of their transients.

We propose here a less demanding definition of partial coherency. It may

be initerpreted as a requirement that the equivalent machines of the areasW

represent as closely as possible a preselected group of modes. In the next

chapter it will be shown that in the particular case, when these modes are

the slowest modes of the system, the resulting area decomposition is

relatively independent of fault locations and loading conditions. In our

approach partial coherency is related to the spectrum separation of the

previous chapter. In the ideal partial coherency case the solution L of the

suitahlv, formulated Riccati equation has the elements made of zeros and ones,
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C
which unambiguously define coherent areas. The subsystem reproducing comple-

mentary subspectrum turns out to model intermachine dynamics, showing that

in the case of ideal partial coherency the interarea and intermachine

dynamics are decoupled. In a nonideal case our approach is to search for a

solution L which can be approximated by the matrix of zeros and ones. In

q this case areas are made of machines which are near-coherent in the pre-

selected modes, and weakly coupled rather than decoupled area and intermachine

dynamics.

* In connection with power system stability study, there is

continuing interest in the development of a systematic area decomposition

procedure. Our grouping algorithm reduces the decomposition procedure to the

2computation of a basis for the invariant subspace corresponding to the given

subspectrum, and a Gaussian elimination of a low order matrix.

In the next section we present an electromechanical model and

review some of its properties. An overview of existing approaches to

coherency will be given in Section 4.3. In Section 4.4 the concept of partial

coherency will be introduced and its properties analyzed for ideally decom-

I posable systems. A grouping algorithm developed for near decomposable

systems will be given in Section 4.5. The algorithm will be illustrated by

a 48 machine example. Physical meaning of the variables associated with

the decomposition of a system into coherent areas will be given in Section 4.6.

I

6
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3.2. Electromechanical Model

The electromechanical model of a power system with n generators

labeled from 1 to n and m load buses labeled from n+l to n+m is given by [52]

1 1

M ici + Di W = Pm i-Pgi

N
P E v vB sin(6 -6) + v i1,2. ,n (3.2)
gi j=l ij ij i iii

j i

N 2
P E v v B .sin(6i-6) + v.G i=n+l,. .. ,N (3.3)P.i j 1 ii j 13I ij'

where

N = n+m

6. = for i<i <n rotor angle of machine i; for n+l< i<N bus angle of

the load bus i-n (radians)

6. = speed of machine i (per unit)1

Pm. = mechanical input power (per unit)
1

Pgi = generated electrical power of machine i (per unit)

Mi = moment of inertia of machine i

D. = Damping constant of machine i (per unit)1

P z = negative of load consumed at the load bus i-n.

Bij = reactive part of the admittance connecting buses i and j

Gii = i-th diagonal entry of the real port of admittance matrix.

Assumptions associated with the model are:

Assumption 3.1: Mechanical input power Pmi and load P i are constant.

Assumption 3.2: Active power losses are neglected, i.e. active part of

admittance matrix is negle.ted.
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(
Assumption 3.3: Active and reactive power flow are decoupled, i.e. bus

voltages are assumed constant in the model (3.2), (3.3).

Model (3.2) and (3.3) contain both dynamic and static equations. In linear

system theory such models are known as descriptor variable systems [9,10].

Study of the descriptor variable system obtained from (3.2) and (3.3) by

linearization around a stable equilibrium point reveals to a great extent the

intermachine oscillation behavior. The linearized model is

A6 0 I 0 0 A6

A 0 -M-ID -M- 1 0 AW

(3.4)
0 H 0 -I H AP

gg g2. g

0 Hx 0 0 H£ A8

( where

1 ~1l' 2 2'' n n

AWT =

T*
n+l n-fl"'*' NN

AP*
g g ( i- i ....

I

36 36 gg g2

H 1 Z = (h)ij (3.5)

L 4 LH g H££

n
-Zh.. i=j

h {ij i ij (3.6)

_viv j B ijcos (S i - 
6 ) i j

B .. = reactive part of the admittance between buses i and j.
ii

!*
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-li-

If H1 exists (by the assumption on stability of the equilibrium, H1 is in

fact positive definite) (3.3) can be reduced to

I [ 0 ~ 1Al I]= 1M~lK -M1D] [A J (3.7)

where

K g HH1Hg =(k (3.8)
gg g2. it.~. ij

Matrix K has several useful properties which can be deduced from the pro-

perties of the Jacobian H. First, due to (3.6) H and K are symmetric. From

(3.6) it can be seen that matrix H has one zero eigenvalue with the corre-

T
sponding eigenvector v = (1,I,...,i). The same is true for the matrix K,

namely Kv1 = 0, where vI is the n-vector containing first n components of v.

W This property can be derived as follows. Let v2 be n-vector containing last

n components of v. Then, from Hv= 0 we have

-i
v 2 = -H-1 H v (3.9)

so that

KvI = (Hgg-Hg Hz H g)VI  HggV + HgV 2 
= (H Hg)v = 0. (3.10)

99 g 93,Zg g I Z 2 gg gZ

W This property shows that each diagonal element of K equals the negative sum

of the off-diagonal elements in the same row. Under the assumption

Assumption 3.4: i-6jl < Tr/2, if Bij00 we have that the off-diagonal

elements of H are negative, which due to the zero eigenvalue-eigenvector

property means that the diagonal elements are positive. The same is true for

since then HI has all its elements positive so that -H H - 1Hg

Matrix HII is Minkowski matrix for which Theorem A.2 of [57]
applies asserting t at the elements of H_ are positive.

ZZ
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is negative, and hence all the off-diagonal elements of K are negative as

well. Due to (3.10) it means that the diagonal elements are positive.

Based on the properties of matrix K= (k ij) it can be assumed that

the elements k.. are of the form (3.6). In this way we define an equivalent

admittance matrix connecting generator buses only. Under Assumption 3.4 the

q off-diagonal elements of the reduced admittance matrix are of the same sign,

and its diagonal elements are negative sums of the off-diagonal elements in

the same row. An alternative way to get the same kind of model is to

transform each load to an equivalent admittance, and then eliminate all load

buses. In summary we will assume that the electromechanical model is in the

form (3.7) in which k.. elements have the form (3.6) for some equivalent

c admittance elements Bij. This model has several properties which allow even

further simplifications.

At 6* and w*, the eigenvalues of (3.7) are of the following three

types (see Figure 3.1 for an example):

1. a zero eigenvalue corresponding to the motion of all the machine

angles,

* 2. a small negative real eigenvalue corresponding to the aggregate

speed of all the machines, and

3. (n-l) pairs of lightly damped oscillatory modes which typically

range in frequency from 112 to 2 Hz.

Models involving more details, such as excitation systems and governors would

still contain the above set of eigenvalues, modified mostly in the damping and

not in frequency [19]. Since the small damping constant D. does not signi-
1i

ficantly affect the frequencies of the oscillatory modes [271, it can be
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C
neglected. See Figure 3.1 for a typical pattern of eigenvalues of (3.7).

Thus the model used in our approach is

x = -M- Kx = Ax. (3.11)

The properties of the A matrix are as follows:

(P1) A has zero eigenvalue whose eigenvector isq T
vI T i1 ... 1). (3.12)

Property (P1) follows from Av = 0, which is due to (3.6) as the sum of each

row in A= (a ij) is

n -l n
.. = M 1  k = 0, i 1 ,2,...,n. (3.13)j=l I3 I j=] 3

J( (P2) A is diagonalizable because it is similar to the symmetric

matrix

-M-ICKM- /2 (3.14)

where M1/2 is the positive symmetric square root of M. Thus, all the eigen-

values X. of A are real. Furthermore, under assumption that the equilibrium1

of (3.2) and (3.3) is stable, they are all nonpositive [511.

(P3) If A is the state matrix of the system (3.7), with damping

neglected, then the relation between eigenvalues and eigenvectors of A and

is

+ -4-. (3.15)

If x is an eigenvector of A corresponding to Xi. then the two eigenvectors of

are (xT, + / xT)T. Because of such simple relations between eigenvalues

and eigenvectors of 2nx2n matrix A, and nxn matrix A, we choose to deal in

our approach only with the lower order A matrix.

ei
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KThere are two ways of representing disturbances in such linearized

models. In [19,21,23] the disturbance is modeled as an external input to

either unreduced model (3.4) or the reduced (3.7). All the standard

disturbances - generator outage, line switching and load shedding - are

modeled as the equivalent change in load and generation. The duration of the

external input equals the duration of the fault. Hence the model is
Ax + Bu 0 t e t (3.16)

c

=Ax t > t (3.17)

where

0 0
A is the state matrix of (3.7) and B =

-M K M-M [HgZ (H ")lj

u = input; u = [AP

H' = "22" block of the Jacobian H modified in structure to account for a

line outage; otherwise equal to H£.

t = clearing time - duration of the disturbance.c

In our approach disturbance is modeled as an initial condition at t=t for*c

the linearized system (3.11) around a postfault equilibrium point. In other

words only the low order version of (3.4) is considered.

3.3. Review of Existing Coherency Methods

Coherency has been a fruitful approach to the model order reduction

of power systems. The need for repeated simulation of larger and larger power

systems has emphasized even more the role of this technique. A reflection of

6
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this situation is the existence of a number of different approaches to

coherency identification. In this section we give an overview of several

characteristic approaches, in order to identify the limitations and gain

insight into the problem.

In [37] the conditions for coherency of a group of machines are

derived starting from the definition (3.1) and using (3.2), (3.3), and, in

addition, the equations for the reactive power flow. The conditions are

expressed in terms of machine internal voltages and interconnecting admit-

tances as follows. A group of r machines in an n machine system is coherent

if and only if
B.. V

a. 11 (V cos6 -jV sin6 --1 B
M. i ir-i ir M rj3. r

( i=l,2,...,r; j= r+l,...,n (3.18)

b. the disturbance is outside the coherent area.

This condition indicates how strict requirements are to be satisfied for

coherency to exist. One case when they are satisfied is when there are several

machines on the same bus. To deal with the practical systems a less restric-

tive condition is needed. The one of reference [37] is given using the

linearized model (3.16). If r machines are to be coherent, and if the

corresponding states are the first r states of x in (3.16) then the condition

for coherency is expressed as

a. IA12 11 < E: (3.19)

b. l1B l < 1

for some small numbers and -. Matrices Al1 and B1 are rx(n-r) "12" block

of A and rxl block of B. In other words coherency is a result of weak
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Kcoupling of the group of r machines with the rest of the system and the
disturbance is outside the group. The reference (37] does not contain an

algorithm for identifying areas.

P2 In [20,21] coherency is related to controllability observability

of (3.16). The output is defined as follows. If a coherent- area is to

contain r machines, that is

y = [ ,r-1 i: 0 x: Cx (3.20)

where x has been ordered so that first r components are the states of the

coherent machiens, then a necessary and sufficient condition for coherency is

that

Im Q cCKer C (3.21)

where 0 is the controllability matrix (B,AB,...,An-IB). This condition

simply says that from any of the machine differences in the coherent area

the disturbance should not be seen, either because the controllable modes are

unobservable through C or because the observable modes are uncontrollable

through B. In the case of nonideal coherency it is suggested to measure the

distance between the two subspaces of (3.21) and define coherency when the

distance is small. An algorithm for checking the condition (3.21) would be

based on singular value decomposition [441 of several matrices of the same

order as the order of the system, and is therefore inappropriate for large

power systems.

*The approach of [23] implicitly exploits the controllability-

coherency relation. Two basic ideas are realized. First, that machines which



56

are coherent in the model (3.16), i.e. during the fault, will be coherent

throughout the entire response period. Second, coherency is essentially

defined with respect to the modes which are excited by the disturbance.

Namely, eigenvectors of the modal matrix M from

x(t) Mz(t) (3.22)

are multiplied by the initial values of mode excitation, i.e. the matrix

= Mz(O) (3.23)

where z(O) is 2nx2n diagonal matrix with the ith diagonal entry equal to z (0)

is considered. Then two machines i and j are declared coherent if the dif-

ference 11m.-mI < E for some small e, where mi and m. are row vectors of M.

k The method requires computation of all eigenvalues and both right and left

eigenvectors of the .atrix A. For large power systems this may require con-

siderable computer time and memory.

Instead of normalizing all the eigenvectors, as in (3.23), the idea

of using only a few preselected modes (a few eigenvectors of M) to define

coherency has been explored in [26]. There the coherency of machines i and

* j with respect to mode k is defined as the requirement that

angle(mik,mjk) < E < 7/2 (3.24)

where mik and mjk are (in general) complex elements of the matrix M. For a

real eigenvector this requirement means that the elements of the k-th eigen-

vector corresponding to the i-th and j-th machine have to be of the same sign.

The criterion means that the machines i and j are accelerated (decelerated)

by the power from the rest of the system for more than half a period of the

k-th frequency. Coherency with respect to the group of modes is defined so

L
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LI that the criterion (3.24) is satisfied with respect to each mode of the

group.

The idea of using coherency for model order reduction has found

goverwhelming response from industry after it had been promoted in [41], and

in particular after a complete computer program has recently been developed

and its utility demonstrated on a number of large systems [19]. The method

employed is a direct application if the definition (3.1), which means that

to obtain system response, the integration is needed for each disturbance and

then comparison of responses for each t on some time interval. A fast inte-

gration method (trapezoidal integration) is used to keep the numerical burden

on the reasonable level. The method, however, does not provide any insight

into the relation of coherent areas to the system parameters, as in thew
previous me'hods.

In all the previous methods coherent areas depend on the location

of the fault. Therefore for each new fault reevaluation of the areas has to

be made. In [39] an attempt has been made to overcome this difficulty, and to

come up with the areas which can be used for more disturbances. A solution is

found in a probabilistic approach. Namely, a set of disturbances, i.e., inputs

u in the model (3.16) with given probabilities is used. A measure of

coherency between machines i and j is computed as

_ 2Tc.. f - dt e .Se.. (3.25)

where p is selected to make c., finite for T-,

T
= I_ r Ex(t)x(t)}dt, (3.26)

Tp o
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1'
and e is the vector of zero elements except i-th, which is 1 and j-th

ij

which is -1. It is easy to see that smaller values of c indicate that
ij

machines i and j are coherent. Of particular interest is the case of the

infinite time interval. Then S can be expressed as

S = ATB(R+ PP T)BT (AI)T (3.27)

i where A and B are defined by (3.16), u is the expected value of u, and R is

its covariance matrix. A is defined as

A X = 1 X- I  (3.28)

where A is a 2n-2 diagonal matrix of nonzero eigenvalues of (3.16) and X

'- is its matrix of right eigenvectors. For zero mean, independent identically

T
distributed disturbance R+ p T = I and S of (3.27) depends only on the para-

meters of the system. This dependence is made explicit in [39] by writing

part of (3.27) in terms of transformed matrix A, rather than via eigenvalues

and eigenvectors. However, by using the above form to eliminate all the

modes of the system which cause insignificant changes in S, it has been

concluded in [39] that the eigenvalues of the reduced system, based on

coherency and eigenvalues of the reduced system based on the modal method

[15], are approximately the same.

This important connection between coherency and modal methods has

also been indicated in [16] under the special condition that L of (2.11) has

iThis expression is different from [391 in that it is independent
of the choice of reference machine whose choice may be a problem, but is in
fact irrelevant for the existence of coherent areas as will be shown later in
the chapter.

0
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the structure in which each row has only one zero element equal to 1, and all

other elements equal to zero.

Most of the presented coherency methods concentrate on the develop-

ment of an alternative coherency criterion, in order to avoid direct

simulation, implicitly required in Definition 3.1. Except for [19] none of

the methods offer an algorithm for identifying coherent areas, which is

aefficient enough to be applied to large power systems. Most of them, except

[39,261, would give areas which are valid for only one disturbance.

The coherency definition and the corresponding algorithm for

identifying coherent areas, which will be given in the rest of this chapter,

are aimed at overcoming the difficulties of the existing methods and

retaining their good characteristics, We use the result of [16] directlyU

to define the so-called ideal coherency. Systems with ideally coherent areas

serve to give us an insight which we then use in analysis of realistic power

systems, in much the same way as the descriptor variable system analysis of

(1.11) serves to give insight into the behavior of singularly perturbed

systems (1.9). A result of this approach is the new algorithm for identifying

coherent areas, designed for application to large power systems. Analytical
W

study reveals that so obtained coherent areas are almost independent on fault

location and nonlinearities of the system.

3.4. Partial Coherency

Considering the definition of coherency (3.1) and the model (3.17)

it is clear that coherency can be achieved only if the initial condition

x(O) is such that only r modes are excited, for some r< n. This is also

clear from the coherency condition (3.21), for if dim Imc)Q= n, this would
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mean that there exists a single disturbance which would excite all the modes,

but then C must be zero matrix which means that there is no coherency. In

other words, each case of coherency is a partial coherency. In this section

we will give a new formulation for the existence of partial coherency in terms

of generalized Riccati equation. The coherency will be connected with the

uspectrum separation problem treated in Section 2.2. Let us first define

partial coherency.

Definition 3.5: Given r eigenvalues of A in (3.11), a . Then machines "i"r

and "j" are coherent with respect to a (partially coherent) if for all t of* r

interest, possible tE [0,o), and any initial condition x(0), their angles

x.(t) and x.(t) satisfy

x.(t) -xj(t) = zij(t) (3.29)

where z. (t) contains none of the modes from ar. A coherent area consists of

all the machines coherent to each other.

We note that in this definition no machines from different areas can

be coherent, that is, no coherent area can be divided into more areas.

Although Definition 3.1 does not require that the number of coherent

0
areas equal the number of modes r, systems with this property, which will

be called r-decomposable systems, are of particular importance. The study of

r-decomposable systems is an essential step toward the analysis of more

common "near-decomposable" systems, that is systems with near-coherent rather

than coherent areas.

Definition 3.6: The machines "i" and "j" are near-coherent if in Definition

3.1 the contribution of the modes from a in z. . (t) is small. A near-coherentr ij
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Uarea consists of all machines which are near coherent to each other. An r-

near-decomposable system consists of r near-coherent areas.

Our approach to the identification of coherent areas is to first

IJ consider this problem for r-decomposable systems. We show that in this

idealized case the solution of the matrix Riccati equation (2.13), which

2
separates the spectrum of A into a and a , automatically groups the machinesr r

into areas. We then use this result to develop a grouping algorithm for

near-decomposable systems.

We first study the definition (3.29). In each area i, consisting

of n. machines, there are only n.-1 independent functions z. .(t). We can

form a basis of these functions for the areas by selecting arbitrarily one

machine which we call reference machine, and forming the differences of allU
the other machines in the same area with respect to that machine. Doing so

for all r areas we form n-r angle difference functions z. .(t). If we denote
iJ

by x the vector of r machines selected as reference machines in the areas,
m2

and by x2 the n-r vector of the remaining machines, which we will call

follower machines, then the z.. variables making vector z can be written in
1J

terms of x variables as

2_ 1
z = x L x . (3.30)

By comparing (3.30) with (3.29) it can be seen that the matrix L has ing

each row only one nonzero element which is equal to 1. For the row j,

corresponding to the j-th follower machine, if the element 1 is in column i,

that means that the j-th follower machine and the i-th reference machine are

1 2
in the same area. This means that given x , x , and L the coherent areas

g
are uniquely defined. Therefore we call the matrix L a grouping matrix.

0g
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since it groups the follower machines with the reference machines. However,

when the areas are specified, there is not a unique choice of variables for
1 2 1 x2
x and x ; to each choice of x and x there corresponds a different L . As~g"

an illustration consider a three area five machine system. Given

x (x ,x2,x3)T

q 2= Tx =(x 3 ,x5)

L g [l00 (3.31)
S0 10

the three areas, which are composed of machines 1 and 3, machines 2 and 5

and machine 4, are uniquely defined. For the same areas a different choice of

x 1 (x 4 ,x 3 x )

2 (3.32)
x = 5

will result in a different L
g

1Lg [ (3.33)

Note the zero column in L of (3.31) or (3.33) indicates the presence of ag

single machine area. Equation (3.30) can be interpreted as a special case

of the transformation (2.11)

= 1] 1 rx 2  = TL (3.34)

si oL 0 x x

The substitution of (3.34) into (3.11) results in
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FB1 (3.35)

LR(L) B 1z

where BI, B and the Riccati equation R(L) are given by (2.9), (2.10), and

(2.13). To meet the definition (3.29) system (3.35) must have the following

C
properties. First z has to contain only modes corresponding to a, for any

initial condition x(0). That implies that R(L) = 0 with L being the solution

corresponding to the spectrum a r . Next from (3.34) and (3.29) it follows

that L = L . These observations allow an alternative formulation of coherency
g

in terms of the generalized Riccati equation.

Theorem 3.7; In an n-machine system let xI be the angles of r noncoherent

machines and x2 be the angles of the other n-r machines. This system is

r-decomposable if and only if the solution L of R(L) = 0 corresponding to a

given a is a grouping matrix L=L .r g

Proof: According to Theorem 2.3, z will have only the modes corresponding

to ac if R(L)= 0 such that Im is the invariant subspace of A corresponding
r LI

to u . For the definition (3.29) to be satisfied this L must be equal to anr

L . Conversely, if a solution of R(L)=0 exists and is L , it satisfies the

definition (3.29).

Suppose now that the system is r-decomposable with respect to a given a , but

we do not know its areas. How can Theorem 3.3help us find them? First, we

1 2
make a choice of x and x , which in turn defines the corresponding equation

1
R(L) = 0. If our x does not contain coherent machines this equation will

have the solution L which is the grouping matrix needed to define areas. If

1
our x contains coherent machines, the solution L will not exist. The

1
negative outcome would mean that a new choice of x would have to be made

and a new equation R(L) = 0 is solved.
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The situatiou is considerably more involved if this direct search

is applied to a near-decomposable system due to the fact that L is no longer

a grouping matrix. A further difficulty is that for any choice of machine

angles x , the solution L usually exists. In principle, one can make all
1

reasonable choices of x and form the set D defined next.

Definition 3.8: Given a and a basis V of the corresponding invariant! r
subspace of A. Consider V= PV= h 2 ] , where P is any permutation matrix

Define D = {L=V 2 } for all P such that V exists.

If the system is indeed near-decomposable, the set D will contain at

least one element sufficiently close to a grouping matrix L . One possible
g

measure of the approximation between L and L is a norm of 6= L-L . The norm
g g

is defined as the maximum sum of absolute values of row elements, that is

r
1IL11 = max Z 12.ij , L = ( ij). (3.36)

i J=l

Thus if there exists a solution in D which is also a grouping matrix, that

is, a decomposable system, then the norm (L-L ) is zero. In a near-

decomposable system, one can search over all the solutions in D and find one

which minimizes norm (L-L ). The systematic method for area identification

in the next section avoids this exhaustive search. However, it is interesting

to show an example of the search procedure. Let us decompose into two areas

the simple three-machine system (Figure 3.2) whose model is

-14.3 5.43 8.831

S 14 .3 -49.4 35.1 x. (3.36)
•58.4 81.4 -140.

Let the spectrum a2 consist of the two eigenvalues of smallest magnitude.

There are only three possible choices of reference machines for this example,
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H(sec) 6.4 H(set) 3.01
D(pu) = 2.5 D(pu) = 1.0

o1.63 u o 8 I 6 3 :0.85pu
23

0.0654 Pu -- 0.1095 pu

V2 =1.012 jO. 1648 Pu 1.0+ jO.35pu V3
= 1.022 + J.OO8292 pu

9-Q :

1.25 + JO.50 pu 0.90 + JO.3O Pu

1--' -,=I.04 + JO Pu

0.723 pu 0.2703 pu D(pu) 9.6

6P963

Line # From To R(pu) X(pu) B/2(pu)

1 1 4 0. 0.0567 0.
2 4 5 0.017 0.092 0.079
3 5 6 0.039 0.170 0.179
4 3 6 0. 1.0586 0.
5 6 7 0.0119 0.1008 0.1045
6 7 8 0.0085 0.072 0.0745

8 2 0. 0.0625 0.
8 8 9 0.032 0.161 0.153
9 9 4 0.01 0.085 0.088

Figure 3.2. An example of the 3 machine system.

6
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i 1(lx3)T, 1xlI (x2x) ,2T

x 1 x3)T , (x x) and xI = (x 2  and two possible choices of Lg,

[0 1) and [1 0]. As our first choice of reference machines consider

1 M s,
X (XX 3). Then the solution of the Riccati equation, which is for the

given spectrum the dichotomic solution is

Ld = [-0.47 1.47]. (3.37)

U Of the two possible L matrices, the one with the best approximation ofg

Ld is Lg [0 1], with

I Ld-Lgl = 0.94. (3.38)

The second choice of x 1 = (x2 ,x3)T will result in a dichotomic solution of the

corresponding equation R(L) = 0

Ld = [-2.13 3.131. (3.39)

Of the two possible grouping matrices the one which is a better approximation

of Ld is Lg [0 1], with

IL d-L g1 = 4.26. (3.40)

The third possible choice of x1 = (xl.,x2)T will result in the dichotomic solu-

tion of the corresponding Riccati equation

Ld = [0.32 0.681 (3.41)

• which is best approximated with L = [0 1]. This gives
g

IlL d-L g1 = 0.64. (3.42)

The third choice of reference machines results in the solution L which can

be better approximated by an L than for any other choice. The areas definedg
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LI by the resulting L are machine 1 in one area and machines 2 and 3 in the
g

other area. There are several other observations that can be drawn from

this example. First, by comparing (3.41) and (3.37) it can be seen that

gthere is more than one choice of reference machines which result in the same

area definition, although the grouping is most clearly displayed in the third

case. The second choice of reference machines results in Ld with the largest

norm. This is the case when the reference machines are taken from the same

area. If this system was r-decomposable, we would not have had the solution

at all.

In remark 2.8 it was pointed out that the spectrum separation and

the modal method order reduction are equivalent problems. In Theorem 3.7 it

was shown that r-decomposability can be expressed as the spectrum separation

problem. Hence for r-decomposable systems all the three methods for reduced

order modeling: modal method, spectrum separation, and coherency are directly

related. After the aggregated model based on coherent areas is presented in

Chapter 4, it will be shown that the modal method and this aggregated model

based on coherency have the same eigenvalues. Therefore one of the tests for

validity of areas can be the comparison of eigenvalues of BI and B2 (3.35)

with those of A where B1 and B2 are computed according to (2.9) and (2.10) by

using L for L. For our three machine system a(B1) = {0, -28.6}, c(B2) = {-175},g

and a(A) = (0, -37, -1661, which is another indication that the areas are

near-coherent.

The above direct search in the three machine example is presented

only as a motivation for the systematic algorithm presented in the next

section.

p
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3.5. Grouping Algorithm

From the three machine example it is apparent that finding the areas

consists of two interdependent tasks: first choosing the reference machines,

and second associating the other machines to the reference machines. The

approach used in the three machine example is to exhaust all possible choices
1

of x and L , that is for each L, a particular L was found to minimize norm

(L-L ). The best choice of xI is the one corresponding to the smallest of

these minima. When the order of the system is large, this exhaustive search

would be computationally prohibitive. Due to the properties of the set D

established next in Lemmas 3.5 and 3.6, the exhaustive search can be avoided.

The algorithm presented in this section computes only one element of the set

D, which does not necessarily minimize norm(L-L ), but still unambiguously

determines the areas.

Lemma 3.9: Given a such that OE a . Then every element LED defined by
r r

Definition 3.4 has the property

r
(a) Z £.. k 1, i=1,2,...,n-5, (3.43)

j=l 1j

that is the sum of row elements equals 1, for each row;

* (b) 1JLI1 > 1. (3.44)

Proof: From the proof of Theorem 2.3, if u is an eigenvector of BI, thenu
V =  (3.45)

is an eigenvector of A. In particular, if V = V , then from (P1)
o
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V = V° ffi j (3.46)
LU o

Thus (3.43) is obtained by writing LdU in scalar form. The (b) follows

from (3.43) and the definition of the norm (3.36).

Notice that every L has the norm equal to 1. Hence the search for
g

a grouping matrix due to (3.44) has to be based on the elements of D with the

small norm. Based on (3.44) we can define a grouping error as follows.

Definition 3.10: Let L be an LED with the smallest norm. Then a groupingm

error for a given L is
g

E = IL -L gi. (3.47)m g

From this definition it follows that 0 SE 5-, with E=0 if and only if the

system is r-decomposable.

Using the connection between coherency and spectrum separation

analyzed in the previous chapter, we can now analyze why some solutions to L

VI have large norm. L is computed using (2.20) for a given basis matrix V.

From the fact that Lg is also a valid basis of the invariant subspace

corresponding to a r, it follows that any other basis will have identically

* the same row vectors in V corresponding to the machines in the same area.

Geometrically, there will be r distinct groups of identical row vectors of V.

In the case of near-coherency we will have, instead, r narrow nonoverlapping

cones containing all the row vectors of V. Now it is clear that if reference
1

machines, which give components of the vector x , contain two machines from

the same area, then the resulting V will have two identical row vectors (in

the case of r-decomposable systems, or near-identical in t case of r-near-

decomposable systems) and hence the solution will not exist, or will have a

0
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very large norm. That was the case with the second selection of reference

machines in the example of the previous section. Since at the time of

computing a basis V it is generally not known whether the selection of

reference machines is good or not, the question is whether the effort spent

on computing V (which is considerable) is lost. The following result

answers the question.U
Lemma 3.11: Given a subspectrum a of A and a basis of the correspondingr

invariant subspace V. Then each element L of D is a solution of the Riccati
equation corresponding to a for the system with state vector x=Px.

* r

Proof: If V spans an invariant subspace of A then PV spans the invariant

T
subspace corresponding to the same subspectrum of PAP . The result then

follows from Theorem 2.3. This result shows that to find an L in D with a

small norm we need to compute a basis V for a given state ordering, and then

perform a suitable permutation of rows. In finding such a permutation we

benefit from the geometrical interpretation of coherency requiring existence

of narrow cones of row vectors in V. Hence, to ensure invertibility of V1

we want to select r vectors from the r different cones. In this way we ensure

* invertibility and well conditioning of VI. To find this set of r rows, we use

Gaussian elimination with complete pivoting. During the elimination, the rows

and columns of V are permuted such that the (1,I) entry of the resulting V is

* the largest entry in magnitude. Note that permuting the rows of V is equi-

valent to changing the ordering of the machines. This (1,1) entry of V is

used as the pivot for performing the first step of the Gaussian elimination.

* Then the largest entry is chosen from the remaining (n-l)x(r-l) submatrix of

the reduced V and is used as the pivot for the next elimination step. The

elimination terminates in r steps and the machines corresponding to the first
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[r rows of the final reduced V matrix are designated as the reference machines.

In this Gaussian elimination process, rows having small entries will not be

used as the pivoting row because these small entries are the result of eli-

mination with almost identical rows already used as pivoting rows. Thus,

this algorithm does not put two near-coherent machines together as reference

machines.

* For the set of reference machines found by the algorithm the

corresponding L is readily computed from

VTT T
VL= V (3.48)

1 2

using the LU decomposition of V1 obtained from the Gaussian elimination. The

next step is to find an L approximating L, that is to find the machinesg

w belonging to each area.

From "3.47) we see that if row vectors of VI are understood as a

basis for an r-dimensional space, then elements of L are coordinates of the

row vectors of V2 in this basis. Specifically, the elements of a j-th row

of L, jl9Zj2,... ,jr, are coordinates of the j-th vector in V2 on

V19V25-9.v r . If we now recall the geometrical image of coherent areas as

Wconsisting of narrow nonoverlapping cones of row vectors in V, and that the

Gaussian elimination selects r vectors from r different cones, it becomes

clear that in each row j of L, corresponding to a machine which belongs to

some area k, there will be only one element close to 1, which is the pro-

jection of the j-th vector of V2 on the basis vector vk along the space

spanned by vectors v., i=1,2,...,r, i#k; all the other coordinates of this

vector, i.e., all the other elements in the same row of L will be small.
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U
Therefore to find an L from a computed L we proceed as follows. In eachg

row of L we find the largest positive element, approximate it by one and

approximate all other elements in the same row by zero. In view of the above

analysis this is a suboptimal procedure for minimizing the norm of L-L, i.e.,

the grouping error of Definition 3.10. Although we cannot always claim that

OLD <RL'A, L'ED (therefore the suboptimality of the algorithm), it is clear

from the geometrical explanation that for near r-decomposable systems the

algorithm gives a unique definition of areas. In other words if the

O"coherency cones" are sufficiently narrow, no matter which reference

vectors are selected as long as there are r vectors from r different cones,

the belonging of the other vectors to these cones is uniquely defined by the

c largest element in each row of L. In this case IL-L II = 0(E), where F is theg

largest angle among two angles in the same cone. As the angles of the cones

start increasing, the criterion for machine grouping based on the largest

element in each row of L becomes less discriminative. For each follower

machine we can define a discrimination factor as follows.

Definition 3.12: Given an LGD with the smallest norm, let i be the column

* index of the largest positive element and k be the column index of the second

largest positive element in the same row. The discrimination factor for

the follower machine j, DF. isJ

DF.j = IIZJ- Z iI1 -I 1j.- ZI (3.49)

where Z. is the j-th row of L and e. is the i-th row of the (rxr) identityJ 1

matrix.

The largest value of DF is 2, which is in the case of misplacing

ideally coherent machines, and the smallest value is zero, which is in the
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case when v JEv 2 has the same coordinates on both v. and vk , viv k Ev I .

Machines with the small discrimination factor should be given special

consideration. First, they can be grouped based on approximating the secondD
largest element in the row by one if that choice is more convenient for some

reason (for example to achieve an area grouping consistent with the administra-

tive boundaries of the areas). Second, in the case of network changes these

are the machines most likely to change their area belonging.

We now summarize the grouping algorithm as follows:

Step 1: Decide on the number of areas and spectrum a .r

Step 2: Compute a basis matrix V for a given ordering of the x variables

and a
r

Step 3: Apply Gaussian elimination with complete pivoting to V and obtain

the set of reference machines.

Step 4: Compute L for the set of teference machines chosen in step 3.

Step 5: Construct the matrix Lg ano find the machines in each area.

The main computational load is in step 2. However, only a partial eigen-

subspace V of A is required and since A is similar to a symmetric matrix,

W eigenvalue-eigenvector computation is well conditioned [46]. The numerical

aspects of the basis computation will be discussed in more detail in

Section 4.8.

We illustrate this area selection procedure on a 48 machine system

from [18]. The data are given in the reference. From the linearized sysLem

state matrix A, we extract the nen matrix A of (3.11) by eliminating rows of

A corresponding to 6 and columns corresponding to w. This matrix is given

.n Appendix B. In the first step we specify that we want nine areas with
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respect to the nine slowest modes. From this point on the algorithm proceeds

automatically giving the following results. In step 2 a basis for the 9-

dimensional slow subspace is computed. In step 3 the Gaussian elimination

is performed and the set of reference machines is found to be 5, 39, 44, 34,

48, 41, 17, 29, 36. In Step 4 the solution L is found (for this selection of

the spectrum it will be a dichotomic solution) and it is given in Table 3.1.

The largest element in each row, those elements are underlined in Table 3.1,

is used to identify the belonging of the corresponding machine to an area,

i.e., this element is approximated by 1 and all other elements in the row by

zero. As a result the following grouping of machines into areas is obtained:

Area 1: 1, 2, 3, 4, 5, 6, 7, 8, 9

Area 2: 39, 42

Area 3: 43, 44, 45, 46

Area 4: 34, 35

Area 5: 48

Area 6: 32, 37, 38, 40, 41

Area 7: 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 31, 47

* Area 8: 10, 27, 28, 29, 30

Area 9: 11, 12, 33, 36.

The grouping error (3.47) normalized with the number of follower machines is

* 0.74. The average value of the elements of L approximated by one is .63 and

the average value of elements of L approximated by zero is .05. In average,

the discrimination factor is 0.85 (compared with the maximal value of 2).

* However, for some machines like 10, 14, 24, 25, 31, 32, 33, 37, 38, 42, and 47

the discrimination factor is much smaller than the average value. For example,
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Table 3.1. Ld for the 48 machine system.

l 5 39 44 34 48 41 17 29 36

1. 0.56 -0.00 -0.04 -0.01 -0.00 -0.00 0.05 0.42 0.02
2. 5 -0.00 -0.04 -0.01 -0.00 -0.00 0.05 0.38 0.02
3. 0.83 -0.00 -0.01 -0.01 0.00 -0.00 0.03 0.15 0.01
4. 0.83 -0.00 -0.01 -0.00 0.00 -0.00 0.03 0.14 0.01
6. 0.84 -0.00 -0.02 -0.01 -0.00 -0.00 0.03 0.15 0.01
7. 0 -0.00 -0.02 -0.01 -0.00 -0.00 0.03 0.16 0.01
8. 0.85 -0.00 -0.01 -0.01 0.00 -0.00 0.05 0.11 0.02
9. 0.58 -0.00 -0.01 -0.01 0.00 -0.01 0.10 0.30 0.04

10. 0.1 -0.00 0.03 -0.03 0.01 -0.01 0.28 0.43 0.13
11. 0.07 -0.01 -0.03 -0.15 0.00 -0.04 0.21 0.28 0.66
12. 0.08 -0.01 -0.02 -0.12 0.00 -0.03 0.21 0.27 0.62
13. 0.10 -0.00 -0.01 -0.03 0.00 -0.02 0.51 0.32 0.12
14. 0.11 -0.00 0.02 -0.02 0.01 -0.01 0.46 0.32 0.12
15. 0.04 -0.00 -0.01 -0.02 -0.00 -0.02 0.78 0.17 0.06
16. 0.02 0.01 -0.00 0.03 0.00 0.01 0.77 0.10 0.06
18. 0.02 0.00 -0.00 0.02 0.01 0. 01 0.78 0.09 0.06
19. 0.03 0.01 0.03 0.04 0.02 0.02 0.67 0.10 0.08
20. 0.03 0.01 0.02 0.03 0.02 0. 01 0.72 0.10 0.06
21. 0.02 0.00 0.11 0.02 0.08 0.00 0.63 0.09 0.05
22. 0.03 0.00 0.09 0.02 0.07 O.01 "T7 O.10 0.06
23. 0.06 0.00 0.05 -0.00 0.01 -0.01 -T-- 0.19 0.07
24. 0.09 0.00 0.21 -0.01 0.04 -0.00 0.37 0.24 0.06
25. 0.11 -0.00 0.17 -0.02 0.03 -0.01 0.3 0.30 0.07
26. 0.10 -0.00 0.09 -0.03 0.02 -0.02 0.42 0.33 0.09
27. 0.07 -0.00 0.12 -0.00 0.01 -0.00 0.05 0.73 0.02
28. 0.02 -0.00 0.03 -0.00 0.00 -0.00 0.01 0.93 0.00
30. 0.04 -0.00 0.06 -0.00 0.00 -0.00 0.02 0.88 0.01
31. 0.02 0.05 0.00 0.13 0.01 0.10 0.48 0.06 0.15
32. 0.00 0.24 -0.00 0.09 0.04 0.41 0.16 -0.01 0.07
33. 0.00 0.04 -0.00 0.28 0.00 0.10 0.25 0.02 0.31
35. 0.00 0.01 -0.00 0.87 -0.00 0.02 0.05 0.00 0.05
37. 0.00 0.32 0.01 0.05 0.09 0.40 0.09 -0.01 0.04
38. 0.00 0.38 0.00 0.04 0.06 0.41 0.03 -0.01 0.03
40. 0.00 0.28 -0.00 0.05 0.00 0.56 0.09 -0.01 0.03
42. 0.00 0.47 0.00 0.03 0.03 0.39 0.06 -0.01 0.02
13. 0.01 0.00 0.73 -0.00 0. 11 0.00 0.02 0. 13 0.00
45. 0.02 -0.00 0.60 -0.00 0.12 -0.00 0.18 0.07 0.02
46. 0.00 0.00 0.89 0.00 0.07 0.01 0.01 0.01 O. 0
47. 0.02 0.00 0.26 0.01 0.21 0.00 0.37 0.08 0.04

S1
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for machine 33, DF3 3 = 0.06. All the machines with a small discrimination

factor will be called critical machines. Note from Figure 3.3 that all the

critical machines are border machines of their respective areas, but not all

the border machines are critical machines. Despite the presence of the

critical machines, the area grouping is good, as will be shown in Section 4.7

by some characteristic machine responses.

3.6. Area Variables and Intermachine Variables

0 In the previous section it was shown that the coherency is equiva-

lent to the requirement that a grouping matrix achieves the spectrum separation.

Then, the state variables associated with the subsystem with state matrix B2

C are z variables (3.29), i.e., intermachine variables within coherent areas.

In this formulation the subsystem (x ,B ) is still coupled to the subsystem

(z,B2). For the separate analysis of these two subsystems it is necessary to

decouple them, and one way to do it is by using the transformation (2.52)

introduced in Section 2.4,

[y I H x (3.50)

Applying this transformation to (3.35) with L satisfying R(L) = 0 results in

[ [ P(HJ (3.51)

As shown in Section 2.4, equation P(H) 0 has always the solution, whenever

r =0. However, in this rarticular case even more can be concluded.
r r

)
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Figure 3.3. Coherent areas of the 48 machine system.
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Lemma 3.13: Consider the matrix A -M K of (3.11), where K is symmetric and

M is the diagonal matrix of machine moments of intertia, whose (rxr) and

(n-r)x(n-r) diagonal blocks are M and M2, respectively. Then each solution

L of R(L) = 0 corresponding to some a , and the corresponding solution H of

P(H) = 0 are related by

SH= (M1 + LTM 2L)-1LTM2. (3.52)

Proof: Let us first rewrite R(L) 0 and P(M)=0 as

I [-L I]A (3.53)

(I HI B [-HI = _ (3.54)

Substituting B= T AT-1 into (3.54) yieldsL L

I-HL H] A [j [I-H H(-M 0K)M M fHJ
[-ATL1Hinto AT.54)*y(355)

I- LH] I-LH

4 = [(l-Ht)Ml1 H ]2 1 T =21 H 0. (3.55)
= M2HLI-L-)

Pre- and post-multiplying (3.53) by [M2 (I-LH)]T and [(I-HL)M 1]T and
1

comparing to the transpose of (3.55), we obtain

HM1 = (I-Lu) TM2L (3.56)

which simplifies to (3.52).

The same relationship can be obtained by modal methods [16]. Under

the conditions of this lemma the complete transformation from x to (y,z)

4
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3variables is

wher [ ] [ 1M, M a1L TM2I [:2] (3.57)

|Twhere

Ma  M 1 + LTM2L .  (3.58)

If the system is r-decomposable then H has the same "zero-nonzero" pattern

as LT and we denote it by H . With L and H used in (3.57), an interesting
g g g g

interpretation of the physical meaning of y and z variables follows. First,

notice from (3.58) that in this case M is the matrix of area inertias, i.e.a

the i-th entry contains the sum of moments of inertia of all the machines in

the i-th area. Then from the first row of (3.57) we get immediately that

r y variables are familiar "area center of inertia" [41], given by

Yi M j MX /M ai for all j in area 1. (3.59)jJJ

In summary, in the case of r-decomposable systems by dividing the system into

coherent areas, it is possible to construct directly two low order subsystems,

one describing the dynamics of intermachine oscillations within coherent areas,

and the other describing the interarea dynamics. For the r-near-decomposable

system we still apply the same transformation (3.59) and (3.30). We will get

the two subsystems which are weakly coupled, rather than completely decoupled.

The same is true for models with damping and nonlinear models. When the

spectrum defining coherency is given as r slowest eigenvalues of A, the pro-

cedure will result in y variables being the slow states and z variables being

the fast states of the system. For the r-near-uecomposable systems, their

basic slow, i.e., fast character will be retained, which means that by means
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of coherency the mixed state model (3.11) is transformed into singularly

perturbed form. In [25] it was shown that application of singular

perturbation on the transformed model gives excellent results in terms of

eigenvalue approximation of the reduced subsystems compared with the full

system eigenvalues. More properties of the slow coherency will be given in

* the next chapter.
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4. SLOW COHERENCY, WEAK COUPLING, AND NONLINEAR EQUIVALENTS

4.1. Introduction

IIn this chapter we show that only if coherency is defined with

respect to the slowest modes of the linearized system (3.11), the resulting

areas are weakly coupled, i.e., weaker than for any other partial coherency.

The area boundaries are in this case relatively insensitive to small loads

and paramete: changes. These two factors taken together indicate certain

robustness of area boundaries, making them useful for nonlinear system

analysis. Possibilities for using slow coherency for analysis of nonlinear

models are discussed and conclusions verified on a 48 machine system. Benefits

in numerical identification of coherent areas resulting from using slow

coherency are discussed at the end.

There is no previous published work on the relation between

coherenc) and weak coupling, as well as the analytical study of the sensiti-

3vity of area boundaries to parameter changes. However, the use of linear

coherency for aggregation of nonlinear models is implicit, or alluded to in

[16,19,41,431. Other uses of slow coherency considered in this chapter [45],

which exploit the connection between time scales and coherency, are based on

singular perturbation theory.

4.2. Electromechanical Equivalent of Area Dynamics

As a preparation for exposition of the main result of this chapter

concerning a relation between slow coherency and weak coupling between areas,

we first study aggregated models of the linearizcd system (3.11). This

II
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C
analysis is extended to nonlinear models in Section 4.6. Once areas are

identified, their aggregation is intuitively appealing to a power system

expert [19,41]. Each area is represented by one generator, those are then

suitably interconnected to preserve the total power interchange between

areas. The resulting interconnection matrix is generally nonsymmetric [191.

In this section we proceed differently. We use analytical tools of Chapter 3I
to establish aggregated models and their properties. One of the results is

that the aggregated model has the same structure as in previous approaches,

but the interconnection matrix is symmetric, so that it can be modeled as a

passive network without phase shifters. The result is given in the following

lemma.

Lemma 4.1: Let the coherency in the system (3.11) be defined with respect

to a spectrum a containing zero eigenvalue, and let L :R(Lg) = 0 define
r g g

corresponding areas. Then

(i) the aggregated model of (3.11) which reproduces area dynamics

is defined by

y = Sx (4.1)

* where

S = (I-H L +H). (4.2)
gg g

(ii) The aggregated state matrix F= B1 = A1 1+A 2L can be factored1g

asB =M- K (4.3)
a a

where M is the diagonal matrix of area inertias (3.50) and K is a symmetrica a

* matrix defined as
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K =(I L ) K( . (4.5)
a g

g

(iii) B1 is a function of connections between machines in

different areas only and not a function of connections between machines in

the same area, i.e.

Z Z kpq i~j
(pE(i) qEI(j) 

p q

ki.. (4.5)
ija

ZI ki2 , i=j

Before giving the proof let us emphasize the following. In the standard

aggregation approaches [6,7], the main concern is to obtain a low order model

which reproduces a given spectrum. In application to the electromechanical

model of power systems, once L and the corresponding H are known, more can
g

be achieved. Namely, the complete decomposition of the system into two sub-I
systems is possible in such a way that one subsystem reproduces the given sub-

spectrum, and the other subsystem reproduces the complementary subspectrum.

Proof: (i) The form of S follows from (3.55) and (3.50). In comparison to

the general form of aggregation matrix given in [51, S = P(I O)X- , it can be

seen that in this case P = X , i.e., it is the r-dimensional principal submatrix

of the modal matrix X.

(ii) Again with reference to the general form of the aggregated

state matrix [4], F=B fSAS , we see from (2.7) that the r.h. side inverse

S+ is S + = (I L ) T . Using the particular form of the solution H = M a L TM  (as
g g a g 2

given in (2.50)), we get S=M - (I +L ) TM from which the result follows
a g

immediately.
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(iii) The result (4.5) follows by noting the specific "zero-one"

structure of L and the fact that the diagonal elements of K are the negative
g

sums of off-diagonal elements. The above properties are best illustrated by

an example.

Example 4.1: For the (hypothetical) system in Figure 4.1, the matrices M

and K are as given below. We will find a grouping matrix for this system, and

then analyze the corresponding aggregated model B

M = diag(5,1,4,1,1)

-5 2 0 2 1

2 -3 1 0 0

K 0 1 -4 1 2

2 0 1 -3 0

1 0 2 0 -3

If r= 2 and a, = {0, X5}, then

[1 0]

Lg[0 1

satisfies Riccati equation (2.13) and defines coherent areas as indicated in

the figure by the dotted lines. The matrix H is given by
g

4 0 0]
H M_ 1 ITM
SaLg 2  [ 1 1

3 3

Then from (2.9) BI is
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I 2M I

II I

M=~1

P;-6962

Figur 4.1.Ideally 
coher.ent system.
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M 0 - (k +k +k
B~~ =A + = ~ N - 1 2+k 1 4 k15 1
B A +AL11 A12 g 2] L k 21k

[5 ]01 [-5 251
qwhich gives a nonsymmetric interconnection matrix. However, by (4.3) the

same B can be written as

S M2+M 4 +I5 L k 2 1 a  -k21a

k 1 2a= k 2 1 a= k1 2 + k14 + k15 + k32 + k34 + k35

Bl 1 [9 1 99 2]
i.e., in terms of the symmetric interconnection matrix. The initial condi-

tions for machines are computed using the transformation (3.52) with the

V

4 particular values for L and H 9

4.3. Structural Conditions for Coherency

1 Using the fact that in the case of coherency L and H satisfy
g g

Riccati (2.13) and Lyapunov equations (2.49), respectively, allows alterna-

tive formulation of the coherency directly in terms of network and machine

parameters. The following lemma states the result.

Inl
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Lemma 4.2: A necessary and sufficient condition for a system (3.11) to be

divided into r coherent areas according to Definition 3.1 is that

(i)

S (v v b k Z Cos 6 k£ _ v j v Z bitCos 6j) = 0 (4.6)
ZI(i) Mk M.

i=l,2,...,r; j =r+l,...,n

or equivalently

(ii) Mai
M. vivbicos. =i

Mi EGI(k)v 1 Z it i

M akMa E v vb cosO (4.7)

~l,..,r j= r+l,.. .,n.

#0
For simplicity of notation it is assumed k= k(j) to mean the repre-

sentative machine of the area containing j.

Proof: Condition (4.6) follows from (2.13) directly by inserting L for L,
~g

and (4.7) follows from (2.49) by inserting L and H for L and H.g g

Similar conditions were also obtained in [21] using a different

approach. These conditions are interesting in that they emphasize the role

of network and machine parameters in forming areas. For most networks and

loading conditions cosine terms in (4.6) and (4.7) can be approximated by 1.

Then the two conditions say that if

d. = Z i= 1,2,...,r (4.8)
ji M

jIz j = r+l .. n

is defined as electromechanical distance of machine j from the area i, then



88

all the macines in the coherent area k have the same distance to a given

area i, where i,k1 1,2,...,r.

For the 48 machine system of Section 3.5, Table 4.1 gives the

average variation of this distance for each of the nine areas. The conditions

of the lemma guarantee partial coherency, but they do not take explicitly into

account the spectrum corresponding to the coherency.

4.4. Weak Coupling Between Areas

So far we have considered partial coherency with respect to any

prespecified spectrum a, with the only restriction that it had to contain the

zero eigenvalue. In this section, as well as in Section 4.5, we will show

that the slow coherency, i.e., the case when r contains r slowest eigenvalues

of (3.11), has particularly useful properties.

The basis for the following analysis is the result of Section 4.2,

which establishes a link between coherency defining spectrum and the strength

of connections between areas. Before stating the new result, we introduce

several definitions, similar to the definition of the electromechanical

distance (4.8).

Definition 4.3: The electromechanical connection between areas i and j is

defined as

D.. =M -1  Z k i#j (4.9)
13 a, pE l(i) qEI(j) pq

i,j = 1,2,. ... r.

It
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K Table 4.1. Average violation of the criterion (4.6) for the 48 machine
system.

Area- 1 2 3 4 5 6 7 8 9

1 .09 - - - - - - .02 -

2 - .04 - - - .07 - - -

3 - - .13 - 02 - .01 .06 -

6 - .03 - - - .05 .02 - .01

7 .01 - .03 - .01 .01 .09 .02 .01

8 .03 - .01 - - - .07 .10 1.02

9 - - - .01 - .01 .02 .0i1 0
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The electromechanical connection of machine i to the system is

r
Di  E D . (4.10)ij=l ij

j#i

The total interconnection of the system is

r
D = iE D.. (4.11)q T i=1 i

Assuming that the cos terms in k are approximately 1, then all thesepq

connection measures are basically measures of electromechanical distance. We

also define

Definition 4.4: The measure of the maximal strength of the aggregated model

is T

m = max - - a  (4.12)
x XTM X

a

which is the biggest ratio of the potential over the kinetic energy in the

aggregated model.

We are now ready to characterize different types of coherency.

Lemma 4.5: Suppose that in the system (3.11) there are several different

* L :R(L )=O, each corresponding to a different spectrum a . Suppose that onegg r

a contains r slowest eigenvalues of the system, i.e., it defines slowr

coherency. Then,

(i) the total interconnection of the system, DTv is the smallest

for the slow coherency case;

(ii) the maximal strength of interconnections, ms, is the smallest

for the slow coherency case.

U
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Proof: The proof uses the relation between eigenvalues of a and area inter-
r

connections established in Lemma 4.1, and various definitions of eigenvalues.

r
(i) This property is established using TrB1 = Z X Eor  , the form of

diagonal elements of B1 which are given by (4.5), and the fact that this trace

is the smallest for the slow coherency case. (ii) This property can be

derived using eigenvalue definition via the Raleigh-quotient [27] and the

fact that the largest of the slow eigenvalues, which is equal to ms, is the

smallest in the case of slow coherency. The results of the lemma indicate

that slow coherence has the property to divide the system into weakly coupled

areas so that the total sum of interconnections is minimized. Since for a

given system the total sum of connections between machines is equal to the

total sum of interconnections between areas and the sum of connections insideg
areas, it fllows that the slow coherency also maximizes the total sum of

internal ccnnections in the areas. This property will be further clarified

later on in this section. With this result an interpretation of the slowI
coherency can be the following: it is a result of groups of machiens being

strongly coupled inside the groups and weakly coupled between the groups. The

results concerning the slow coherency are global, that is, for the whole

system rather than for each individual subsystem, although as we will see

later on the weak coupling property can be stated as the average property of

each subsystem, which is also observed on the example system. Table 4.2 gives

interconnection patterns for the 48 machine svtem divided into 9 areas based

on slow coherency. Entry t.. in the table gives relative electromechanical

connection between areas i and j, where scaling is done with the total con-

nection of area i, i.e., tij =D ij/D i . Entries less than 1% in magnitude are

denoted by -. Several observations can be made from the table.
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Table 4.2. Interconnection strength between coherent areas of the 48
machine system.

1 2 3 4 5 6 7 8 9

1- - - - - 1.5 9 -

2 2 3.5 26 1 - -

9 3 12 -

4 - 4 7 - 32

5 3 34 17.5 3 3 -

C 6 - 20 1 7.5 4 - 3

1 17.5 9 2 7 6

8 4 5 7 7 3

9 7 5 14 7

0
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(i) In all cases tii > tij, i.e., connections inside areas are

stronger than the connections between areas.

(ii) The cases of stronger interconnections (for example "t26")

are the cases where some machines in areas 2 and 6 are grouped based on rows

of Ld which were not close to zero-one pattern, see Table 3.1.

(iii) The state matrix A has the same block-diagonal structure as

W Table 4.2, if the rows are ordered so that all the machines in area 1 come

first, then all the machines in area 2, and so on.

These interconnection properties reflect on the characteristics of

the fast dynamics, determined by the matrix B2 of (3.10). In the remainder of

this section we will study the properties of B2 . From equation (3.10)

B2 = A 22-Lg A 2 Using L we can easily derive that the elements of B2 are2 2 12g2

given by

a pq-ak(p),q ij

b id n (4.13)

!- a P.-a k~ , p i=J, p= i+r, q= j+r

From (2.7), (2.9), and (2.10)

tr B2 = tr A- tr B1  (4.14)

it is easy to see that trB 2 contains the total sum of connections between

machines inside coherent areas. Since in the case of slow coherency

jtr B21 Itr B11
--- r (r< ) (4.15)r r2

it follows that the average connection strength within areas is higher than

the average interconnection strength. To state this simpler: on the average,

S
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connections are stronger between machines inside the same area than between

machines from different areas. A consequence of this property is that the

matrix B 2 is also block-diagonally dominant, as is A. Its diagonal blocks,

of size equal to the rumber of follower machines in the areas, are functions

of elements of A corresponding to the connections of machines inside areas,

1 see (4.15), and off-diagonal blocks are functions of interconnection elements

of A. Hence the diagonal blocks have larger norms than their off-diagonal

blocks. When the interconnection table is formed for B2 , the same way Table 4.2

is formed for A, the entries in the table are almost identical to those for A.

4.5. Sensitivity of Area Boundaries to Parameter Changes

In this section we will show that in the case of slow coherency areas

are not only weakly coupled as established in the previous section, but also

area boundaries are relatively insensitive to small changes of network para-

meters. The first step in this study is to evaluate the changes in the steady

state matrix A, for small changes in network parameters. A similar problem

has been treated in power system analysis within so-called security analysis.

Security analysis is concerned with the problem of fast computation of the

equilibrium state after some given disturbance. These methods, surveyed in

[421, are numerical in nature, despite the fact they use various forms of

sensitivity relations to achieve necessary effectiveness. There are two

characteristics which distinguish the approach in this section from the

security analysis approach. First, our ultimate goal is to evaluate the

change of L after a change in network parameters, and second, we will use the
g

analytical, rather than numerical approach, with the purpose of gaining
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insight into the behavior of area boundaries. For that reason we will

consider only the change of admittance elements (which may model a line

outage, for example).

Outage of a line between nodes i and j affects matrix A in two

ways: first, it directly changes admittance yijgyji,Yii y j , and second, it

changes the equilibrium angles 6ii=l,2,...,n. Angle changes can be

- analyzed from the DC load flow equations [52]

P = B-e (4.16)

with

P - n-l vector of active power injections into the nodes

of the system

B - admittance matrix,reactive part

a - n-l vector of angle differences 6.-s , i= 1,2,...,n-1.

After a line outage B changes to

o B' = B + AB (4.17)

where
T

,B= Ab. .e .e. (4.18)
ij ej ij

Abi. - the change in admittance of the line (i,j)

T
eij - row vector with all zero elements except the i-th, which

is 1 and the j-th which is -1.

For small Ab.. the change in equilibrium angles can be found as (42]
1J

Ae = -B-1ABe. (4.19)

b Using the symmetry of B a bound for the change in 6 can be established as

hAeh - Aij i j minjA(B)I (4.20)
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U
This expression shows several facts: (i) in systems working close to their

static stability boundaries, even small changes in parameters can cause big

changes in equilibrium angles, (ii) parameter changes in higher loaded lines,

and (iii) bigger parameter changes can cause bigger equilibrium changes.

In the rest of this analysis we assume that parameter changes are

small so that the linear analysis can still be applied after the disturbance.

Hence in determining sensitivity of area boundaries we concentrate on the

effect of the admittance change (4.17). We want to see the effect of this

• change on the change in Lg = L . We approach the problem by studying how the

slow subspace of A changes. From Lg Ld it follows that Vo=LL ] is a basis

of the slow subspace of A. To find a first order variation of this subspace

corresponding to the disturbed matrix A' M1 (B+&B) we use Lemma 2.11 and

apply only one simultaneous iteration to A' with V as the initial condition.
0

To make the slowest spectrum dominant prior to applying the simultaneous

iterations, we shift the spectrum of A, as well as the spectrum of A', for

some p to the right. This is possible in this case since all eigenvalues of

A are real and in the left hand side of the complex plane, by assumption. The

* result on the variation of L is given in the following lemma.g

Lemma 4.6: Suppose that for the system (3.11) cos terms in (3.6) are

approximatley I, and that there exists L =L d s.t. R(Lg ) 0. Then for a suf-g dg

ficiently small perturbation AB of the type (4.17)

(i) if i and j belong to the same area, the first order variation

of Ld is zero

(ii) if i and j belong to different areas, the first order varia-

tion of Ld is zero except for rows i and j.
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Proof: Let A ' = A+AA = M-(B+AB). Due to the linear convergence of the

simultaneous iterations (SI), one suitably defined S1 may be used to obtain

a first order variation of the slow subspace of A when perturbed as A+ AA.

For that we have to make SI converge to the slow subspace of A'. This we do

by using (2.40) and A" = A'+IiI , p2.maxjX(A)f, instead of A. The iT -ial guess

is V ]= L which is a basis of the slow subspace of A. After SI,

V A"V. Using (M B+I) I (B+4I) and the fact that .+ II) ism VI= A"Vo. Usin (M1+ I g = g

nonsingular, we can write

V = [V + AV] (4.21)

where

AV=AbM 1e e T (B1 + I)-l. (4.22)AV= ejij Lg 1

In case (i), e ijV = 0 because i and j belong to the same coherent area. In

case (ii), it can be seen from (4.22) that the conclusion follows directly.I
Hence, the lemma indicates that for small parameter changes of the type (4.17)

all machines remain in their predisturbance areas, except possibly the

terminal machines i and j. An easy extension of the above argument can be

used to show that if LB is modeled to account for parameter changes of more

than one line within one coherent area and no changes in the others, the only

nonzero rows in the matrix AV are those corresponding to the machines in the

affected area. This means that in the case of a disturbance only machines in

the affected areas may migrate from this area, and probably only the boundary

machines. Due to the weak coupling between areas the situation as assumed

above may model a line outage within a coherent area.

6
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(
A natural question which arises after this analysis is how can the

predisturbance areas be used in the determination of areas after a disturbance.

There are several possibilities.

(i) When the allowed computation time is minimal and the distur-

bance is small, the predisturbance areas can be used.

q (ii) The first order variation formula (4.22) can be used to

decide how to group borderline machines. Any decision about dislocating

machines can be checked via the criterion (4.6) (only for the affected area

and the machines in it).

(iii) Use the exact matrix A' (from a load flow or static state

estimator) and V as initial guess to perform necessary number of SI. A0

( simplification in this approach can be obtained if far from disturbance areas

are replaced by their slow equivalent derived in Section 4.2. This is equi-

valent to some sort of condensation used in structural mechanics [45].

The following example using the 48 machine system confirms the

expected robustness of area boundaries with respect to the parameter and load

changes, and hence indicates that area boundaries will have to be changed

I only infrequently. The example corresponds to applying the alternative (iii)

above for finding areas of the network with different configurations. Three

network configurations are considered. For each the exact Ld is computed

4 using the corresponding linearized state matrix. The areas are obtained by

approximating this L by an L as explained in Chapter 3.
d g

Case one is the nominal configuration of the system, which has been

considered so far. For this system, Ld is given in Table 3.1. The corresponding
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areas are given in Figure 3.7. Case two is the same network, but after

switching a line in area 1 [45] following a disturbance in the area. The

third case is similar to case two, but with a line disconnected in area 7.U
Inspection of the elements of Ld for all the three cases shows that none of

the machines changes its area belonging except for the machines 1 and 2, which

in case 2, instead of being grouped with the area 1, become a part of area 7.

The rows of L corresponding to three characteristic machines, machines 1, 2,
d

and 9, are given in Table 4.3 for the three network configurations. The dis-

*crimination factors for machines 1, 2, and 9, also given in the table, are

considerably smaller than the average value of DF (for case one), which is 0.85.

It is interesting that the reference machines in all three cases remain the

same.

4.6. Use of Slow Coherency in Nonlinear System Analysis

aWeak coupling between areas in the case of slow coherency and insen-

sitivity of area boundaries to small parameter changes indicate the possi-

bility of using coherent areas of the linearized model (3.11) for the nonlinear

system analysis. Existing coherency methods [19] use, in fact, the linearized

model to identify coherent areas, and use them for nonlinear system

analysis. In this section we will analyze aggregation of the nonlinear model

using the block diagonalizing transformation for the linearized one. This

analysis is along the lines of the approach in Section 2.5, except that here

we take explicitly into account the specific structure of L and 1I . Later in~g g

the section we discuss different possibilities for approximate system analysis

based on the division of the system into slow coherent areas.
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The nonlinear model (3.3) reduced to machine terminals is

rewritten here for convenience.

+ M-ID6 M-l(P m-P e(6)) (4.23)

Similarly to the approach in Section 2.5, we apply the transformation

6 = 6° + T (4.24)

using slow and fast deviations around the equilibrium, y and z, respectively,

and the block-diagonalizing transf'trmation of the linearized model T from

(2.52). In component form (4.24) becomes

S60 + Y-z , iEd?
* ii 1 1 J(i) M ai.

M (4.25)
6.=60 + Yk- 2 -z E

i k iEJ(k) Mak

where

k = k(i) - representative machine for the area containing i

J(i) = l(i) - {i}

M = E M

After some manipulations with the transformed variables in (4.23), we get

Yi + Daii + D.. = P . - P i,=i1,2 . r (4.26)
jEJ(i) J j mai eai

D. Dk D D. M

! + (---k)yj(k) + (- !-1) EM. Mk Mk Mj ZEJ(k) Mak

D. P P P P.
+M + -) J (4.27)

j k
if33
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where

,, (4.28)
Pmai £GI(i)Pm

D E D£ (4.29)

--eai E P .ei (4.30)Wel £I (M e

Equation (4.26) describes the area motion, while equation (4.27) describes

the intermachine motion. For small variation around the equilibrium point,

these two equations are decoupled. We assume that even for large excursions

around equilibrium, variables y basically determine area motion and variables

z the intermachine motion. We now analyze in more detail the area motion.

c Writing power output of area i, P eai as the sum of intra- and interarea load

flow, we get (after a few manipulations) the accelerating power of the area in

the form

Fai(Y'Z) E Pmai P eai

r
= Z b. sin(6 O + . (z)) Cos

Z=l jEI(i) sEI(Z) is js is Yi£

r0
+ E Z b. sin 6i

Z=i JEl(i) sEI(Z) is

- Z b sin(0 + T W(z))
jEI(i) EI(i) 91 j 9,

r
- Z ( Z Z b. cos(5i + s siny i

ffl jEI(i) sEI(Z) js is i'js n

-mai (Y,Z) - P (Y,Z) (4.31)

S
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K! where

P ma - the first three terms in (4.31)

Peai - the fourth term in (4.31)
T(z) - H ) z '  ii "  i - T J 'I L

g 'Y~~~(z (I+LH) z . %

From the linear system analysis, the following is true.

Proposition 4.7: Assume L and H satisfy (2.13) and (2.49), for systemg g

(3.11). Then:

M P mai(0,O) = 0 (4.32)

(ii) dz F ai(Oz) = 0 (4.33)

(iii) dy P mai(Y,0) = 0. (4.34)

Proof: (i) and (iii) follow directly from (4.31). The property (ii) follows

from the block diagonalizing property of the transformation T for the

linearized model.

Based on these properties we make

Assumption 4.8: The terms y(z) have a small effect on y and can be neglected

in (4.26) and (4.31).

With this assumption the model for area dynamics can be realized

as a machine-impedance system, as explained in Section 4.2, but with time

varying input P mai(y,O). The other possibility exploited in [43] is to

sacrifice the symmetry of the network for the advantage of having the

constant mechanical input. In this model, accelerating power is written as

r
F ai(Y,0) - Y isin(y i+tiZ) + Pmai (4.35)

=I i
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where

2 2 + 2(436)
it gi 6it

a Z b sin 6o

jEI(i) sEl() bJ S i s (4.37)

Sb cos6 0  (4.38)
it JEIi) sEI(i)s s is

Oa= arc tgbi. (4.39)

In this model power input is constant and each line requires one phase

* shifter, which eliminates admittance symmetry. Let us now analyze the

intermachine dynamics. In equation (4.27) the following is assumed.
D. Dk

Assumption 4.9: The contribution of (_._-).() is smaller than the contri-
D Mi Mk

bution of -1 i in equation (4.27) so that it can be neglected.
Mj

Then, the equation of intermachine motion becomes

D.
(6 ) +__,1 (6md- ed (4.40)

where

mmd Pmk (4.41)

p Pej P ek (4.42)

ed M. Mk

Equations (4.40)-(4.42) hold for any partial coherency. However, in the case

of slow coherency furhter simplification is possible by using the weak

coupling between areas. In this case it can be assumed that the fast

variables are excited (different from zero) only in the area in which the

disturbance has occurred. The model for fast dynamics now becomes

6
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C k +L 6 = + 1 : b sin(6 -6k)
jk +Mj jk md Mi ZEl(k) Jl jk Zk

J1

+ E bk) sin 6 k- P 0 Erk (4.43)
Mk 1e(kki 2k o J k

where

'; - is the set of all follower machines in the affected area k

I and P is artificially added to satisfy the equilibriumo

condition (6 j k6 =0).

Equation (4.43) can be solved independently from the equation for

the slow dynamics. However, the solution angles are with respect to the

reference machine angle, which becomes known only after the slow subsystem

(4.26), (4.31) is solved and the transformation (4.25) is used.

a

4.7. 48 Machine Example

£ This section starts with a brief discussion of the results already

given for the 48 machine system in various sections of Chapters 3 and 4. In

addition we will also use system responses to illustrate some of the developed

theoretical points.

In Section 3 the 48 machine system has been divided into nine areas.

based on nine slow modes and the corresponding Ld approximated by an L . Ourg

choice of slow cohetency, rather than any other coherency was motivated by

the weak coupling property of the areas, demonstrated in Table 4.2 and

the robustness of area boundaries, demonstrated in Table 4.3. These pro-

perties of slow coherent areas, derived on a linearized model, will be further

substantiated in this section by using system responses of the nonlinear model.

.|
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First we check the definition of slow coherency as given by

equation (3.29). For that purpose a fault is applied in area one followed

by switching off a line. The definition of areas is kept the same as in

the predisturbance linearized system. Exact nonlinear responses are obtained

and then the slow coherency definition checked by forming the differences of

q responses of machines inside the areas. As expected the area with the most

excited intermachine motions is the disturbed area, i.e. the area one. Some z

variables for this area are given in Figure 4.1 (see also [451), and their

* slow components are given in Figure 4.2. It can clearly be seen that the

difference variables contain some slow dynamics; basically all the individual

machine responses agree in their slow motion. In our definition of slow

coherency we tolerate an arbitrary magnitude of z variables. This is one of

the key differences with the other coherency definitions [19], which restrict

the magnitude of z also. In this particular example for all the machines of

area one to be in the same coherent area according to the latter criterion

the tolerance should be (see Figure 4.1) about 250, but with this tolerance

it may as well happen that many areas collapse into one area. With our

* approach of identifying areas based on approximation of Ld by an L , we avoid

a need for specifying the above tolerance criterion, which may, as indicated

above, significantly affect the found areas.

0 The next figures also illustrate the robustness of area boundaries

to parameter changes, which for the linear case was illustrated by Table 4.3.

For this purpose a fault was applied in area 7, followed by switching a line

in the same area [45]. We now give, for the sake of comparison, the responses

of machines in area 7. Figure 4.3 contains machine angle differences and

0A
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Figure 4.4 contains their slow components. Again as in the previous case

the definition of slow coherency is satisfied for area 7 as well as for all

other areas.

The third group of figures illustrates results of various approxi-

mations in the simulation of the nonlinear model.

Approximation I (Al): In this approximation the singular perturbation approach,

similar to the one in Chapter 2, was applied to the model (4.26), (4.27).

Namely, the fast system (4.27) is assumed to be stable for each value of y(t)

and infinitely fast, so that the set of equations containing differential

equations (4.26) and algebraic equations (4.27) obtained by setting

(t) =i(t)= 0 is solved. Since these equations describe the slow dynamics,

* a large integration step size can be used. However, the number of equations

is still n. From Figure 4 .5a it can be seen that the individual machine

responses are well approximated.

Approximation 2 (A2): The weak coupling between areas, which implies the weak

coupling between the fast subsystems in different areas, suggests using

the differential equations for the area affected by the disturbance, only,

and algebraic equations for all the other-areas. The number of differential

equations equals r+ the number of the free machines in the affected area.

Again, the total number of equations equals n. Inclusion of the fast

dynamics in the affected area improves the accuracy of the responses over the

previous case, as can be seen by comparing Figure 4.5a and Figure 4.5b. The

difference between the exact response and A2 is only due to the fast dynamics

M outside the affected area.

Approximation 3 (A3): This approximation differs from A2 in that outside

the affected area a constant z(t) = z(O-) is used. However, more
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appropriate would be to use z(t)= z(-), but this requires solving an additional

load flow. The results given in Figure 4.5c indicate that this approximation

is somewhat worse than A2.

As a conclusion to this series of experiments, it follows that the

approximation A3 seems to be a compromise between accuracy and integration cost.

Note however, that these simulations cannot indicate only the instability due

to the fast dynamics outside the affected area because in all the approximations

it was assumed that the fast dynamics, i.e., intermachine motion is stable.

Due to the weak coupling between areas this does not appear to be a serious

limitation. Therefore a justifiable approach to the system stability would

be to use the dynamic equations for the area dynamics, and the fast dynamics

for the affected area only.

4.8. Numerical Aspects of the Slow Coherency Algorithm

1Slow coherency proves to be easier to identify numerically than

other types of coherency. In view of the grouping algorithm of Section 3.5,

this is to say that it is somewhat easier to find a basis for the slow eigen-

space than for any other arbitrary eigenspaae (excluding the fast eigen-

space which is physically unrealistic to be used for coherency definition).

This section is devoted to the discussion of various methods for computing

a basis for the slow subspace, with the emphasis on large and very large

systems. By large systems we mean systems in which the computation of all

eigenvalues and eigenvectors is expensive, but their state matrix A can still

be manipulated in the core of an available computer. Very large systems will

be those in which the state matrix cannot be processed in core; computation

0J
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of all eigenvalues and eigenvectors is almost impossiblP. Independently of

the system size there are two factors that make computation of V easier.

(i) Matrix A is similar to a symmetric matrix (3.14). This

means that special programs can be used which are faster and more economical

in memory use than the programs for general matrices.

q (ii) Arbitrary basis of the slow eigenspace can be used, rather

than the eigenvector basis. In the case of identical or very close eigen-

values, eigenvectors are very sensitive to parameter changes (numerical error,

* say), while the space they span is not. Therefore any basis of that subspace

can be used. Most of the existing eigenvector programs compute efficiently

an arbitrary basis corresponding to a multiple eigenvalue and then spend most

of the time trying to compute exact eigenvectors.

For the large systems there are already available production

programs [46] which compute V. The conclusion [46] is that if, roughly, r< 41

which can be considered satisfied in coherency identification, then the

special purpose programs for partial eigensolutions are superior to the

ones that compute all eigenvalues and eigenvectors. Following recommendations

* of [46], the bisection method seems to be a desirable choice. In this method

the frequency range defining coherency, rather than the number of slow modes,

should be specified.

4 Alternatively, a very simple method of Chapter 3, based on Riccati

iterations (2.41), can be usca. For this method an initial guess of reference

machines needs to be made. Good guesses result in faster convergence to the

* solution; poor guesses may require many more iterations, as is evident from

Figure 4.6. Curve a corresponds to a good choice of refer-idce machines,
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in fact to those that are found by the grouping algorithm. Curve b corre-

sponds to selecting machines 13 and 47 instead of 17 and 29 in the above

choice. In this case machines 13 and 47 both belong to the same area (area 7)

and area 8 does not have any reference machine. If this were the ideal

coherency case, the algorithm would not have converged at all.

Computation of partial eigensystems for very large systems is

still an area of active research [47,48,32]. Almost all the methods of this

group, of which we will mention only a few, have inner product a Tx as a

basic in core operation. Methods with this property are simultaneous iteration

methods [49,32], modified simultaneous iteration methods [48], Lanchos

method [49], and modified inverse method [47]. All of these methods have

basically the linear rate of convergence. Some acceleration is possible by

using Tchebishev's transformation [49]. Also, all of these methods can take

advantage of the sparsity in programming the inner-product. However, in the

model (3.11), the state matrix A is dense. We now show, on the example of

simultaneous iterations, that it is possible to use the original sparse

Jacobian (3.4), instead of the reduced one. The result is given in the

* following lemma.

Lemma 4.10: Let J be the Jacobian of the unreduced load flow system in which

the first n rows correspond to the generator nodes and the last m rows to the

load nodes. Let

J ) , J = AE Rnxn (4.44)

D

a -iand assume D exists. Then

0i
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JVk+l =EVk (4.45)

where

Vk= Vjk VIERnxn  (4.46)V 2z

E = [M 1(4.47)
00

generates for sufficiently large k a basis of the r-dimensional slow eigen-

space of M-I(A-BD-IC) -14IK, where K is given by (3.8), in the form of the

matrix V of (4.46).

Proof: Writing (4.45) in expanded form, solving for V2 from the second

equation, and substituting in the first equation, gives in view of Lemma 2.11

* the claimed result.

Use of the sparse Jacobian (4.44) rather than the reduced one as in

(3.11), can result in substantial savings in computation time, as is already

U shown in related approaches, see for example [56].

4.9. Summary of the Chapter
w

In this chapter we have shown that the equivalent for the area

dynamics in the linearized model can be realized by a symmetric network

connecting r generators, each representing one area. In the nonlinear model

the same structure can be retained under very mild assumption, but with time

varying mechanical input, or alternatively, asymmetric network and constant

input. It is concluded further that for most networks and loading

conditions, the coherency is largely determined by network parameters

IF
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and machine intertias, rather than by loading conditions. The most important

result is that in the case of slow coherency areas are weakly coupled.

Furthermore, in this very case the area boundaries are relatively insensitive

to small parameter changes. The weak coupling and robustness of area

boundaries are a basis for using areas obtained in the analysis of the

linearized model for the nonlinear system analysis. Several approximations

based on the use of slow coherency and singular perturbations on the nonlinear

model are demonstrated to be accurate and efficient. Numerical aspects of the

slow coherency are discussed in light of the existing methods and research

trends in the field. A sparse formulation of the numerical algorithm for

computing slow basis is given.

|
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5. SUGGESTIONS AND CONCLUSIONS

5.1. Suggestions for Further Research

In chapter 4 we gave several uses of the coherency. First

we have considered aggregation of linear and nonlinear power system

models. Then by using slow coherency we were able to transform the mixed

state electromechanical power system model into the singularly perturbed

form. Finally, we illustrated several uses of the model in the singularly

perturbed form as well as the weak coupling between coherent areas in

the simulation of the nonlinear model. A simulation of the system is

usually undertaken for the purpose of checking its stability. We now

want to discuss possible uses of coherency and in particular slow coherency

in the direct stability analysis of power systems. In order to do so

we will first sketch the background of the direct stability analysis.

One of the main objectives in the stability studies

of power systems is to determine the so called critical clearing time tc

This is the time defined for each fault and represents the maximal

duration of the fault for which post disturbance system (which may have

different structure than the original one) remains stable. Large tc

indicates that the system is stronger (more robust) with respect to the

given disturbance. Critical clearing time is then used in the design

of protective equipment (local controls). The problem of determining the

critical clearing time is, however, almost identical to the problem of

determining the domain of attraction around postdisturbance equilibrium -

or stability domain in short.

Stability analysis of power systems at the present time is

basically conducted using simulation of system responses for given

disturbances [59]. Such methods enable use of detailed models of system

S



118

-- components (machines and transmission elements) and offer flexibility in

using different configurations of the same network. However there are

some disadvantages: (a) computation time is large, becoming prohibitive

for very large systems, (b) experience needed in interpreting responses

in order to conclude instability and (c) no advantage from previous

simulations can be gained when analyzing the same network for different

fault locations. An alternative is to perform a direct stability analysis

based on Liapunov theory [53]. The electromechanical model (3.2), (3.3),

in which the load nodes are eliminated and the admittances between the

* remaining generator busses are suitably altered as discussed in

section 3.2, is typically used in such studies. By further manipulations

[53] the model can be written in the form

Vx = Ax + B f(y)

y = Cx (5.1)

T
where x = (WlI2 2 6. ,n, 81- Na2-6N,...,SN-lN

V V B [sin(y + ) sin 60 (5.2)
1p qpq i pq pq

* The relation between indexes i, p and q and the form of matrices A, B

and C are given in [53]. For the model (5.1) of the postdisturbance

network the form of a Liapunov function

T T
VWx = x px + 21 fT(u)Qdu V Vc +VP(53xix++ V (5.3)

0

and the necessary definitnes conditions are given in [62]. From (5.3)

M ;
the classical transient energy function (61] is obtained with P t0

and Q = I. Having selected a Liapunov function, the next step is to

S
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find the critical value V(x) V , such that if V(x) < V for some x,c c

then the system is said to be stable. In [60] it is shown that V equalsc

the minimum potential energy over all the unstable equilibrium points

of the system (5.1), i.e.

V = inf V(x) (5.4)
xEU

where U is the set of all the unstable equilibrium points for the system

(5.1). With known Vc computation of the critical clearing time for

each disturbance proceeds as follows. When the system is subjected to

the disturbance, its response is simulated and the function V(x) of

(5.3) is evaluated along the trajectory. The time at which V(x) = V isc

the critical clearing time. From this description it is clear that the

direct methods are in fact the combination of a simulation and a direct

* stability analysis. An inherent difficulty in the direct methods, however,

is computation of Vc2 because tae number of unstable equilibrium points

of (5.1) is 0( 2 n), where n is the number of generators in the network,

U and to find each of this points requires solving the set of (n-l)

nonlinear (load flow) equations. Therefore the utility of the method

critically depends on the way of comput.ng V ; its effectiveness is toc

be measured against possible savings in computer time over the direct

simulation. There are also other problems summerized below which have

resulted in certain scepticism from power industry toward the application

of these methods [Disc. on 61].

(a) The methods have proven useful for small order systems (several

machines, say); for one machine infinite bus system exact stability

boundary can be obtained.

DA



120

(b) Depending on the fault location they can give overly conservative

results when applied to large systems [56]; if parts of the same system

are aggregated., better results can be obtained [56].

(c) Most of the results for large systems are reported for the electro-

mechanical model and the line conductances neglected. Inclusion of the

more detailed mechine models and the conductances is followed by the

difficulty in finding an "appropriate" Liapunov function.

Despite the shortcomings, the need for direct stability methods which

would complement simulation, exists. The utility of the approach is

seen in the planning stage or on-line security assessment where it would

be used to select some critical disturbances for further study. Here

the initial effort spent on computing V would be well compensated by the
c

repeated use of the same V for different faults resulting in the same

postdisturbance network. These methods also offer a basis for studying

the effect of parameter changes on systems stability. In response to

this need, and in an attempt to overcome (some of) the shortcomings,

there have recently appeared several major contributions to the problem

of direct transient stability studies.

First, in [63] it was shown that the potential function

(the integral part of V(x) in (5.3)) is smooth around equilibrium points.

Using this property of the potential function and generalizing the case

0

of one machine infinite bus system, in which 6 is the stable equilibrium,

then the smaller of (±T- 260) is the unstable equilibrium with the

smallest potential energy. Approximations of the unstable equilibrium

points of the following type have been suggested by several authors

(See [53] for an overview)
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k 1 , ...,.. u k , ...... n-), k 1,2, ... , n-i

Mn-i

u k sign[P k (PI+ ' ' +P n )] JI- ] (5.5)uk  sg[ k  ; +M2+ •.. -+M N  1n 1 k

where superscript "o" denotes equilibrium values, and uk is an approxi-

mation of the angle corresponding to the k-th machine becoming unstable.

Variants exist [53] to account for several machines becoming unstable.

Now the search for V in (5.4) can be carried out over the set U whosen c

elements are of the form (5.5). This set may still be large (it has n

elements if only one machine at a time is considered to become unstable,

but combinations often have to be considered as well) so that selecting

the right element remains a serious task. It is interesting to note,

however, that when the separation of a system into groups under a given

* distrubance is known, then the V computed as the potential energy at the

points of the type (5.5) corresponding to these groups gives favorable

results. A major step forward in finding V for a given disturbance has
c

been made in [54,551.

The main idea is that V is the potential energy at the unstablec

equilibrium point which is in the direction of the systems motion (the

motion is considered in the space of angles.6). The direction is determined

at the time when the kinetic energy is maximal. This implies that the

system continues to move basically in the direction established during

the fault, even after the fault is cleared. As a consequence the method

proves to be very effective for the so called first swing instability,

which is when 6 grows without changing signs. On the other hand it is

often inaccurate for multiswing instability, in which case the system

11S !
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T oscillates several times before becoming unstable. In this case the

assumption of unidirectional motion is not satisfied, and a different

unstable equilibrium has to be found in order to compute appropriate Vc

A group of methods with sound analytical background, but less satisfying

practical results so far, is centered around the use of vector Lyapunov

function approach [53,57,43]. The essence of the method is to [58]:

(a) decompose the system into suitable subsystems, (b) find stability

domain of subsystems ignoring the interconnections, (c) impose (linear)

bound on interconnections and (d) find the stability region of the

* overall system [57].

For the methods to be successfully applied it is essential

that the subsystems are weakly coupled [57,58]. The main reasons for the

k to.conservativeness are (a) in bounding interconnections it is assumed

that they all act simultaneously in the way which is the worst for the

systems stability, and (b) nonlinear interconnection terms of the form

s = [sin(x+a) - sina] are usually bounded by x < S < cos a • x,

where e has to satisfy two contradictory requirements: for a large

region of stability to be obtained it has to be as small as possible,

* Tbut for the matrix A(e), from V = A(&)V where V is the vector of

subsystem Liapunov functions, to have all the eigenvalue positive, e has

to be as large as possible. It may happen, therefore, that for a given

0 e, which is a design parameter, suitable A(e) does not exist; then e

has to be increased, resulting ultimately in the reduction of the region

of stability. The methods, however, can be very attractive when the

decomposition of the system into weakly coupled subsystems can be made.

0
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With this somewhat longer introduction into the complex and unresolved

problem, we are now ready to consider coherency in the framework of the

direct stability analysis. Our consideration is basically oriented toward

listing problems for further research.

0 For the methods based on vector Liapunov function approach the

decomposition of the system into areas based on slow coherency seems

to be the best choice because of the weak coupling between areas established

m in chapter 4. If the problem consists of finding the "slow" stability

i.e. the stability of the interarea motion, assuming that the fast

intermachine oscillations within areas are stable, then the vector

Lyapunov function approaches appear to be applicable. However, when the

stability of the overall system, including the intermachine oscillations,

is of interest (which is the most usual case), then there are several

options. One is to study separately the fast and the slow stability using

models (4.26) and 4.43). For analyzing the fast stability, a method

along the lines of [54,55] will have to be used. The other way is to

U aggregate all the areas outside the area in which a distrubance is applied

and study the whole composite system [43].

In summary, the coherency can help in three ways. First,
w

coherency based aggregation reduces the order of the system. Second,

when slow coherency is used, the areas are weakly coupled, and third, the

machines in the coherent areas have a sort of syrmnetry (homogenity) in

coupling (4.6). The last property may imply that the criterion (5.4),

with U containing unstable points (5.5) corresponding to the generators

in the area affected by a disturbance, may not be too conservative.
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Among other applications of the coherency decomposition and

possible extensions of the work we mention the following.

The electromechanical model without damping was used in the

previous analysis under the assumption that small damping does not

affect frequency of the system. However the effects of the more complete

machine models on the identity of coherent areas should be investigated.

Numerical aspects of the simulation algorithm for weakly

nonlinear systems, the algorithm for identifying coherent areas and the

use of the decomposition for analysis and design still deserve a lot of

attention.

When the slow coherency is used for system decomposition, the

areas are weakly coupled. It is felt that this property and a similar

approach can be used for the decomposition of a power system for use in

steady state (load flow) type studies.

5.2. Conclusions

In this thesis the properties and some uses of coherency in

electromechanical models of power systems have been considered.

It has been shown that the coherency can be treated in the framework of

the spectrum separation problem. This property was essential in defining

the new efficient algorithm for the decomposition of power systems into

coherent areas.

When the coherency is defined as the so called slow coherency,

then the areas are weakly coupled and insensitive to small parameter

changes. This is a justification for using linearized model for defining

areas, and then using those areas in the nonlinear model.

6
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For the class of r-decomposable power systems with respect to

the slow modes the subsystem whose states are so called center of

intertia variables is the true slow subsystem and thp subsystem with inter-

machine variables within areas as states is the true fast subsystem.

pApplying the area and intermachine variable transformation to near

r-decomposable systems transforms the mixed state electro-

mechanical model into the singularly perturbed form. Use of the standard

singular perturbation approaches to the simulation of such models was

illustrated on several examples. Analysis of the reduced order models

has revealed the sources of approximations used in going from the exact

subsystems to the commonly used aggregated models, both in the linear

and the nonlinear case.

The numerical algorithm for identifying coherent areas is

*designed with the idea to be applicable for large power systems, and hence

it consists of well conditioned steps and modest use of computer time

and memory. Together with the weak coupling property of the resulting

areas the meL d offers a useful way of decomposing a power system into

subsystems which can then be used in various applications.

.b
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APPENDIX A. ONE MACHINE INFINITE BUS MODEL [34]

a Notation

AVR - automatic voltage regulator

E fdVRRf - voltage regulator states

, I

eq,e - flux decay states

, 6 - swing model states

Subscripts

d - direct axis quantities

q - quadrature axis quantities

f - main field quantities

a

U! • - m ' lw -

S mm
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E fdV R! fj Gjx

C eqed t i Infinite Bus

Figure A.1. One machine infinity bus system.
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Full Model

-[+ (x -x')YI e' -x-'Yisn + E fd
q Td q dxxY qin

f -- R f +KFE fd)
TF k F

1 ( qI YvCS xX)Y] edIe l [1 +- x q-x

=377 (21 - 1)

211 , -D(n -1) -YV (eqcos6 + e~sin6)]
2H

tfd=T EK +K'ES(E f)]I E td+v R

E. (R E fd idt+v e R

RTA T E e

Vt [(1 -x'Y) 2 (e12 + edA2 ) + 2(1-x'Y)(x'YV .)(ed'coss) +Xy ('V 2 1/2

s E(E fd) A satexp [(B sat) (Efd)]

1
Xe +Xe
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C
For the example of chapter 2 the parameters have the following values

H = 5.0 sec TA = 0.06 sec

D = 2.0 pu TE = 0.5 sec

xd = 
1 .2 pu TF 1.0 sec

xq = 1.0 pu KA = 25

x' = 0.25 pu KE = -0.0445

xe = 0.25 pu KF = 0.16

TA = 5.0 sec A = 0.001123
do  sat

T' = 0.50 sec B = 0.3043
qo sat

cThe operating point is defined by

Vi = 1. + jo. p.u.

Vt = 1. + jo.2 p.u.

Sg = 0.8 + jo.1608 p.u.

V~e = 1. p.u.
VRef PU

With these parameters linearization of the model gives the following

* state matrix

-0.58 0 0 -0.269 0 0.2 0

0 -1.0 0 0 0 0.16 0

* 0 0 -5.0 2.12 0 0 0

0 0 0 0 377 0 0

-0.141 0 0.141 -0.2 -0.28 0 0

• 0 0 0 0 0 0.0838 2.0

-173 417 -116 40.9 0 -66.7 -16.7
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K APPENDIX B. MATRIX A OF 6 FOR THE 48 MACHINE SYSTEM
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(

2 3 4 5 6 7 8

1. -0. 150 0.037 0.010 0.004 0.003 0.012 0.009 0.009
2. 0.032 -0.148 0.013 0.005 0.003 0.014 0.011 0.010
3. 0.011 0.016 -0.202 0.039 0.025 0.033 0.026 0.014
4. 0.020 0.028 0,166 -0.583 0.172 0.057 0.045 0.025
5. 0.004 0.005 0.035 0.061 -0.142 0.011 0.009 0.005
6. 0.010 0.014 0.026 0.010 0.007 -0.172 0.061 0.013
7. 0.010 0.014 0.027 0.010 0.007 0.080 -0.196 0.013
8. 0.006 0.003 0.009 0.003 0.003 0.011 0.009 -0.089
9. 0.014 0.017 0.016 0.006 0.004 0.018 0.014 0.034

10. 0.007 0.007 0. 004 0.002 0.001 0.005 0.004 0.006
11. 0.001 0.001 0.001 0.000 0.000 0.001 0.001 0.001
12. 0.002 0.002 0.001 0.000 0.000 0.001 0.001 0.002
13. 0.002 0.002 0.001 0.000 0.000 0.002 0.001 0.002
14. 0.003 0.004 0.002 0.001 0.001 0.002 0.002 0.003
15. 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.001
16. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
17. -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000
18. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
19. 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
20. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
21. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
22. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
23. 0.001 0.001 0.001 0.000 0.000 0.001 0.001 0.001
24. 0.003 0.004 0.002 0.001 0.001 0.002 0.002 0.003
25. 0.003 0.003 0.002 0.001 0.001 0.002 0.002 0.003
26. 0.002 0.002 0.001 0.000 0.000 0.001 0.001 0.002
27. 0.005 0.005 0.002 0.001 0.001 0.003 0.002 0.002
28. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
29. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
30. 0 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
31. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
32. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
33. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
34. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
35. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
36. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
37. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
38. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
39. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
40. 0.000 0.000 0.000 0.000 0.000 0000 0.000 0.000
41. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
42. 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000
43. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
44. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
45. 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
46. 0.000 0.000 0.000 0.000 0.000 O.000 0.000 0.000
47. 0.001 0.001 0.000 0.000 0.000 0.000 0.001
'43. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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9 10 11 12 13 14 15 16

1. 0.011 0.002 0.001 0.001 0.003 0.001 0.001 0.001
2. 0.012 0.002 0.001 0.001 0.002 0.001 0.001 0.001
3. 0.013 0.001 0.000 0.001 0.002 0.001 0.001 0.000
4. 0.023 0.003 0.001 0.001 0.003 0.002 0.001 0.001
5. 0.004 0.000 0.000 0.000 0.001 0.000 0.000 0.000
6. 0.012 0.001 0.000 0.001 0.002 0.001 0.001 0.000
7. 0.012 0.001 0.000 0.001 0.002 0.001 0.001 0.000
8. 0.020 0.001 0.000 0.001 0.002 0.001 0.001 0.000

- 9. -0.198 0.006 0.002 0.002 0.006 0.004 0.002 0.001
10. 0.011 -0.259 0.009 0.012 0.024 0.020 0.009 0.005
11. 0.002 0.007 -0.185 0.084 0.010 0.006 0.003 0.002
12. 0.003 0.010 0.083 -0.228 0.013 0.009 0.005 0.003
13. 0.004 0.009 0.004 0.006 -0.172 0.027 0.015 0.009
14.- 0.006 0.017 0.007 0.009 0.055 -0.289 0.025 0.012
15. 0.001 0.002 0.001 0.002 0.012 0.009 -0.144 0.011
16. 0.001 0.001 0.001 0.001 0.006 0.004 0.009 -0.158
17. 0.000 -0.002 0.000 0.000 0.004 -0.003 0.007 0.020
18. 0.001 0.001 0.001 0.001 0.006 0.003 0.014 0.023
19. 0.001 0.002 0.001 0.001 0.009 0.006 0.015 0.041
20. 0.001 0.001 0.001 0.001 0.007 0.004 0.015 0.029
21. 0.000 0.001 0.000 0.001 0.004 0.002 0.007 0.016
22. 0.001 0.001 0.001 0.001 0.006 0.004 0.011 0.024
23. 0.002 0.004 0.002 0.002 0.014 0.013 0.069 0.015
24. 0.006 0.010 0.003 0.004 0.013 0.013 0.018 0.011
25. 0.005 0.009 0.003 0.004 0.011 0.011 0.008 0.005
26. 0.003 0.008 0.003 0.003 0.016 0.032 0.009 0.005
27. 0.004 0.005 0.001 0.001 0.003 0.003 0.001 0.001
28. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
29. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
30. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
31. O.C0O 0.001 0.001 0.001 0.005 0.003 0.008 0.024
32. 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002
33. 0.000 0.000 0.001 0.001 0.001 0.001 0.002 0.005
34. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
35. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
36. 0.000 0.000 0.005 0.008 0.001 0.000 0.001 0.001
37. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
38. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
39. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
40. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
41. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
42. 0.000 0.000 0.000 0.000 0.000 0. 000 0.000 0.000
43. 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
44. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
45. 0.001 0.001 0.000 0.301 0.002 0.001 0.002 1.002
46. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00'
47. 0.001 0.002 0.001 3. 001 0.006 0. 004 0. 010 0. 0?0
48. 0.000 0.000 0.000 0.000 0.000 0.000 0.00 ).M04

S . . il ... .
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17 18 19 20 21 22 23 24

1. 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
2. 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
3. 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
4. 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000
5. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8. 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
9. 0.000 0.002 0.001 0.001 0.001 0.000 0.001 0.001

10. 0.001 0.007 0.004 0.002 0.002 0.001 0.003 0.002
11. 0.001 O003 0.002 0.001 0.001 0.000 0.001 0.001
12. 0.001 0.004 0.002 0.001 0.001 0.001 0.001 0.001
13. 0.003 0.012 0.006 0.004 0.003 0.001 0.004 0.001
14. 0.003 0.016 0.008 0.005 0.004 0.002 0.00, 0.002
15. 0.006 0.023 0.009 0.007 0.004 0.002 0.017 0.001
16. 0.008 0.030 0.017 0.010 0.007 0.004 0.003 0.001
17. -0.134 0.031 0.024 0.009 0.010 0.004 0.000 -0.000
18. 0.011 -0.173 0.019 0.023 0.010 0.006 0.004 0.001
19. 0.013 0.054 -0.306 0.025 0.024 0.012 0.005 0.001
20. 0.011 0.081 0.032 -0.289 0.020 0.012 0.005 0.001
21. 0.006 0.027 0.023 0.015 -0.239 0.039 0.003 0.001
22. 0.008 0.043 0.034 0.025 0.110 -0.383 0.005 0.002
23. 0.004 0.026 0.013 0.009 0.009 0.005 -0.279 0.011
24. 0.003 0.017 0.012 0.008 0.011 0.006 0.031 -0.436
25. 0.002 0.007 0.005 0.003 0.004 0.002 0.009 0.019
26. 0.001 0.006 0.004 0.002 0.003 0.001 0.005 0.009
27. 0.000 0.001 0.001 0.000 0.000 0.000 0.001 0.001
28. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
29. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
30. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

* 31. 0.009 0.028 0.017 0.009 0.007 0.004 0.002 0.001
32. 0.001 0.002 0.001 0.001 0.001 0.000 0.000 0.000
33. 0.002 0.006 0.003 0.002 0.001 0.001 0.001 0.000
34. 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000
35. 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000
36. 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000

* 37. 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
38. 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
39. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
40. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
41. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
42. 0.000 0.000 0.1000 0.000 0.000 0.000 0. 000 0.000
4 43. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
44. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
45. 0.001 0.004 0.003 0.002 0.010 0.003 0.002 0.003
46. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
47. 0.007 0.034 0.029 0.019 0.134 0.049 0.006 0.006

O4. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6
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25 26 27 28 29 30 31 32

1. 0.001 0.001 0.038 0.000 0.000 0.000 0.001 0.000
2. 0.001 0.001 0.032 0.000 0.000 0.000 0.001 0.000
3. 0.000 0.000 0.014 0.000 0.000 0.000 0.000 0.000
4. 0.001 0.001 0.026 0.000 0.000 0.000 0.001 0.000
5. 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000
6. 0.000 0.000 0.011 0.000 0.000 0.000 0.000 0.000
7. 0.000 0.000 0.012 0.000 0.000 0.000 0.000 0.000
8. 0.000 0.000 0.009 0.000 0.000 0.000 0.000 0.000
9. 0.002 0.001 0.035 0.000 0.000 0.000 0.001 0.000

10. 0.005 0.005 0.075 0.000 0.000 0.000 0.005 0.001
m 11. 0.001 0.002 0.012 0.000 0.000 0.000 0.003 0.001

12. 0.002 0.002 0.018 0.000 0.000 0.000 0.004 0.001
13. 0.002 0.005 0.023 0.000 0.000 0.000 0.009 0.001
14. 0.005 0.018 0.038 0.000 0.000 0.000 0.012 0.001
15. 0.001 0.002 0.005 0.000 .0.000 0.000 0.011 0.002
16. 0.001 0.001 0.003 0.000 0.000 0.000 0.026 0.003
17. -0.000 -0.000 -0.003 0.000 0.000 0.000 0.023 0.004
18. 0.001 0.001 0.003 0.000 0.000 0.000 0.024 0.003
19. 0.001 0.002 0.005 0.000 0.000 0.000 0.041 0.005
20. 0.001 0.001 0.004 0.000 0.000 0.000 0.029 0.004
21. 0.001 0.001 0.003 0.000 0.000 0.000 0.016 0.002

* 22. 0.002 0.001 0.004 0.000 0.000 0.000 0.024 0.003
23. 0.007 0.006 0.014 0.000 0.000 0.000 0.015 0.002
24. 0.044 0.028 0.046 0.000 0.000 0.000 0.012 0.001
25. -0.259 0.036 0.035 0.000 0.000 0.000 0.005 0.001
26. 0.027 -0.208 0.025 0.000 0.000 0.000 0.005 0.001
27. 0.001 0.001 -0.170 0.041 0.017 0.021 0.001 0.000
28. 0.000 0.000 0.239 -0.241 0.000 0.000 0.000 0.000
29. 0.000 0.000 0.194 0.001 -0.196 0.000 0.000 0.000
30. 0.000 0.000 0.300 0.001 0.000 -0.303 0.000 0.000
31. 0.001 0.001 0.003 0.000 0.000 0.000 -0.258 0.025
32. 0.000 0.000 0.000 0.000 0.000 0.000 0.015 -0.169
33. 0.000 0.000 0.001 0.000 0.000 0.000 0.043 0.017
34. 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.004
35. 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.005
36. 0.000 0.000 0.001 0.000 0.000 0.000 0.007 0.003
37. 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.066
38. 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.048
39. 0.000 0.000 0.000 0.000 0.000 0.000 0. 000 0.001
40. 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.029
41. 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.005
42. 0.000 0.000 0.000 -0.000 -0.000 -0.000 0.003 0.027
43. 0.001 0.000 0.077 0.000 0.000 0.000 0.000 0.000
44. 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000
45. 0.004 0.003 0.007 0.000 0.000 0.000 6.002 0.000
46. 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.001
47. 0.006 0.004 0.011 0.000 0.000 0.000 0.0?1 0.003
43. 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001

S
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33 34 35 36 37 38 39 40

K 1. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9. 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

10. 0.002 0.000 0.000 0.004 0.000 0.000 0.000 0.000
11. 0.004 0.000 0.000 0.029 0.000 0.000 0.000 0.000
12. 0.006 0.000 0.000 0.045 0.000 0.000 0.000 0.000
13. 0.003 0.000 0.000 0.002 0.000 0.000 0.000 0.000
14. 0.005 0.000 0.000 0.004 0.000 0.000 0.000 0.000
15. 0.003 0.000 0.000 0.001 0.000 0.000 0.000 0.000

* 16. 0.008 0.001 0.001 0.002 0.001 0.,00 0.000 0.001
17. -0.003 0.000 -0.000 0.001 0.000 0.000 0.000 0.000
18. 0.006 0.000 0.001 0.001 0.001 0.000 0.000 0.000
19. 0.013 0.001 0.001 0.002 0.001 0.001 0.001 0.001
.20. 0.009 0.001 0.001 0.002 0.001 0.000 0.000 0.001
21. 0.005 0.000 0.000 0.001 0.000 0.000 0.000 0.000

. 22. 0.008 0.000 0.001 0.001 0.001 0.000 0.000 0.001
23. 0.005 0.000 0.000 0.001 0.000 0.000 0.000 0.000
24. 0.004 0.000 0.000 0.002 0.000 0.000 0.000 0.000
25. 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000
26. 0.002 0.000 0.000 0.001 0.000 0.000 0.000 0.000
27. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
23. 0.000 0.000 0.000 0.000 O. 0C0 0.000 0.000 0.000
29. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
30. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
31. 0.063 0.004 0.006 0.010 0.005 0.003 0.003 0.004
32. 0.013 0.001 0.002 0.002 0.036 0.017 0.016 0.022
33. -0.172 0.013 0.020 0.034 0.004 0.002 0.002 0.003

* 34. 0.036 -0.127 0.067 0.006 0.001 0.000 0.000 0.001
35. 0.048 0.057 -0.139 0.007 0.001 0.001 0.001 0.001
36. 0.037 0.002 0.003 -0.076 0.001 0.000 0.000 0.000
37. 0.005 0.000 0.001 0.001 -0.280 0.044 0.042 0.030
38. 0.004 0.000 0.000 0.001 0.063 -0. 316 0.064 0.040
39. 0.000 0.000 0.000 0.000 0.002 0.002 -0.013 0.001

* 40. 0.003 0.000 0.000 0.001 0.021 0.018 0.021 -0.142
41. 0.001 0.000 0.000 0.000 0.006 0.005 0.009 0.003
42. 0.002 0.000 0.000 0.000 0.035 0.023 0.091 0.027
43. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
44. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
45. 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

• 46. 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
47. 0.007 0.000 0.001 0.001 0.001 0.000 0.000 0.0010
48. 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000
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41 42 43 44 45 46 47 48

1. 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000
2. 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000
3. 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000
4. 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000
5. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6. 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
7. 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000
8. 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
9. 0.000 0.000 0.000 0.001 0.002 0.001 0.000 0.000

10. 0.000 0.000 0.001 0.003 0.005 0.001 0.001 0.001
11. 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.000
12. 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.000
13. 0.000 0.000 0.000 0.001 0.003 0.001 0.001 0.001
14. 0.000 0.000 0.001 0.002 O.004 0.001 0.001 0.001

• 15. 0.000 0.000 0.000 0.001 0.003 0.001 0.001 0.001
16. 0.000 0.000 0.000 0.001 0.002 0.000 0.001 0.001
17. 0.000 0.000 -0.000 0.001 0.003 0.000 0.002 0.001
18. 0.000 0.000 0.000 0.001 0.003 0.000 0.002 0.001
19. 0.000 0.000 0.000 0.002 0.006 0.001 0.004 0.003
20. 0.000 0.000 0.000 0.001 0.005 0.001 0.004 0.002
21. 0.000 0.000 0.000 0.004 0.021 0.003 0.021 0.011
22. 0.000 0.000 0.000 0.004 0.021 0.003 0.020 0.011
23. 0.000 0.000 0.001 0.005 0.011 0.002 0.002 0.002
24. 0.000 0.000 0.005 0.025 0.059 0.011 0.006 0.007
25. 0.000 0.000 0.002 0.012 0.032 0.006 0.003 0.003
26. 0.000 0.000 0.001 0.005 0.013 0.002 0.001 0.001
27. 0.000 0.000 0.009 0.022 0.002 0. 005 0.000 0.003
28. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
29. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
30. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
31. 0.002 0.002 0.000 0.001 0.002 0.000 0.001 0.002
32. 0.012 0.011 0.000 0.001 0.000 0.001 0.000 O.O O
33. 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.001
34. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
35. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
36. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
37. 0.024 0.026 0.000 0.002 0.000 0.002 0.000 0.025
38. 0.031 0.032 0.000 0.002 0.000 0.001 0.000 0.016
39. 0.002 0.003 0.000 0.000 0.000 0.000 0.000 0.001
40. 0.022 0.014 0.000 0.001 0.000 0.001 0.000 0.006
41. -0.060 0.006 0.000 0.002 0.000 0.001 0.000 0.016
42. 0.036 -0.264 0.000 0.001 0.000 0.001 0.000 0.009
43. 0. 001 0.000 -0. 478 0.267 0. 010 0. 064 0.000 0. 049
44. 0.000 0.000 0.005 -0.052 0.003 0. 034 O. 0%0 O. 005
45. 0.000 0.000 0.004 0.070 -0.228 0.057 0.015 0.021
46. 0. 002 0.000 0. O1 0. 325 0.022 -3. 405 0.001 0.03-
47. 0.000 0.000 0.003 0.034 0.203 0.025 -D.76 0.113
43. 0.003 0.000 0.001 0.006 0.001 0.003 0.000 -0.02)

0
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